forked from moreo/QuaPy
27 lines
876 B
Python
27 lines
876 B
Python
|
import numpy as np
|
||
|
from sklearn.linear_model import LogisticRegression
|
||
|
import quapy as qp
|
||
|
from data.datasets import LEQUA2022_SAMPLE_SIZE, fetch_lequa2022
|
||
|
from evaluation import evaluation_report
|
||
|
from method.aggregative import EMQ
|
||
|
from model_selection import GridSearchQ
|
||
|
|
||
|
|
||
|
task = 'T1A'
|
||
|
|
||
|
qp.environ['SAMPLE_SIZE']=LEQUA2022_SAMPLE_SIZE[task]
|
||
|
training, val_generator, test_generator = fetch_lequa2022(task=task)
|
||
|
|
||
|
# define the quantifier
|
||
|
quantifier = EMQ(learner=LogisticRegression())
|
||
|
|
||
|
# model selection
|
||
|
param_grid = {'C': np.logspace(-3, 3, 7), 'class_weight': ['balanced', None]}
|
||
|
model_selection = GridSearchQ(quantifier, param_grid, protocol=val_generator, n_jobs=-1, refit=False, verbose=True)
|
||
|
quantifier = model_selection.fit(training)
|
||
|
|
||
|
# evaluation
|
||
|
report = evaluation_report(quantifier, protocol=test_generator, error_metrics=['mae', 'mrae'], verbose=True)
|
||
|
|
||
|
print(report)
|