1
0
Fork 0
QuaPy/quapy/tests/test_modsel.py

78 lines
2.5 KiB
Python
Raw Normal View History

2022-05-25 19:14:33 +02:00
import unittest
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
import quapy as qp
from method.aggregative import PACC
from model_selection import GridSearchQ
from protocol import APP
class ModselTestCase(unittest.TestCase):
def test_modsel(self):
q = PACC(LogisticRegression(random_state=1, max_iter=5000))
data = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=10)
training, validation = data.training.split_stratified(0.7, random_state=1)
# test = data.test
param_grid = {'C': np.logspace(-3,3,7)}
app = APP(validation, sample_size=100, random_seed=1)
q = GridSearchQ(
q, param_grid, protocol=app, error='mae', refit=True, timeout=-1, verbose=True
).fit(training)
print('best params', q.best_params_)
print('best score', q.best_score_)
self.assertEqual(q.best_params_['C'], 10.0)
self.assertEqual(q.best_model().get_params()['C'], 10.0)
def test_modsel_parallel(self):
q = PACC(LogisticRegression(random_state=1, max_iter=5000))
data = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=10)
training, validation = data.training.split_stratified(0.7, random_state=1)
# test = data.test
param_grid = {'C': np.logspace(-3,3,7)}
app = APP(validation, sample_size=100, random_seed=1)
q = GridSearchQ(
q, param_grid, protocol=app, error='mae', refit=True, timeout=-1, n_jobs=-1, verbose=True
).fit(training)
print('best params', q.best_params_)
print('best score', q.best_score_)
self.assertEqual(q.best_params_['C'], 10.0)
self.assertEqual(q.best_model().get_params()['C'], 10.0)
def test_modsel_timeout(self):
class SlowLR(LogisticRegression):
def fit(self, X, y, sample_weight=None):
import time
time.sleep(10)
super(SlowLR, self).fit(X, y, sample_weight)
q = PACC(SlowLR())
data = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=10)
training, validation = data.training.split_stratified(0.7, random_state=1)
# test = data.test
param_grid = {'C': np.logspace(-3,3,7)}
app = APP(validation, sample_size=100, random_seed=1)
q = GridSearchQ(
q, param_grid, protocol=app, error='mae', refit=True, timeout=3, n_jobs=-1, verbose=True
)
with self.assertRaises(TimeoutError):
q.fit(training)
if __name__ == '__main__':
unittest.main()