2020-12-10 19:04:33 +01:00
|
|
|
from sklearn.linear_model import LogisticRegression
|
|
|
|
from sklearn.svm import LinearSVC
|
|
|
|
import quapy as qp
|
|
|
|
import quapy.functional as F
|
|
|
|
|
2020-12-10 19:08:22 +01:00
|
|
|
|
2020-12-10 19:04:33 +01:00
|
|
|
SAMPLE_SIZE=500
|
|
|
|
binary = False
|
|
|
|
|
|
|
|
if binary:
|
|
|
|
# load a textual binary dataset and create a tfidf bag of words
|
|
|
|
train_path = './datasets/reviews/kindle/train.txt'
|
|
|
|
test_path = './datasets/reviews/kindle/test.txt'
|
|
|
|
dataset = qp.Dataset.load(train_path, test_path, qp.reader.from_text)
|
|
|
|
qp.preprocessing.text2tfidf(dataset, inplace=True)
|
|
|
|
qp.preprocessing.reduce_columns(dataset, min_df=10, inplace=True)
|
|
|
|
|
|
|
|
else:
|
|
|
|
# load a sparse matrix ternary dataset
|
|
|
|
train_path = './datasets/twitter/train/sst.train+dev.feature.txt'
|
|
|
|
test_path = './datasets/twitter/test/sst.test.feature.txt'
|
|
|
|
dataset = qp.Dataset.load(train_path, test_path, qp.reader.from_sparse)
|
|
|
|
|
|
|
|
# training a quantifier
|
|
|
|
learner = LogisticRegression()
|
|
|
|
model = qp.method.aggregative.ClassifyAndCount(learner)
|
|
|
|
# model = qp.method.aggregative.AdjustedClassifyAndCount(learner)
|
|
|
|
# model = qp.method.aggregative.AdjustedClassifyAndCount(learner)
|
|
|
|
# model = qp.method.aggregative.ProbabilisticClassifyAndCount(learner)
|
|
|
|
# model = qp.method.aggregative.ProbabilisticAdjustedClassifyAndCount(learner)
|
|
|
|
# model = qp.method.aggregative.ExpectationMaximizationQuantifier(learner)
|
2020-12-09 12:46:50 +01:00
|
|
|
|
2020-12-10 19:04:33 +01:00
|
|
|
model.fit(dataset.training)
|
|
|
|
|
|
|
|
# estimating class prevalences
|
|
|
|
prevalences_estim = model.quantify(dataset.test.instances)
|
|
|
|
prevalences_true = dataset.test.prevalence()
|
|
|
|
|
|
|
|
# evaluation (one single prediction)
|
|
|
|
error = qp.error.mae(prevalences_true, prevalences_estim)
|
|
|
|
|
|
|
|
print(f'method {model.__class__.__name__}')
|
|
|
|
|
|
|
|
print(f'Evaluation in test (1 eval)')
|
|
|
|
print(f'true prevalence {F.strprev(prevalences_true)}')
|
|
|
|
print(f'estim prevalence {F.strprev(prevalences_estim)}')
|
|
|
|
print(f'mae={error:.3f}')
|
|
|
|
|
|
|
|
true_prev, estim_prev = qp.evaluation.artificial_sampling_prediction(model, dataset.test, SAMPLE_SIZE)
|
|
|
|
|
|
|
|
qp.error.SAMPLE_SIZE=SAMPLE_SIZE
|
|
|
|
print(f'Evaluation according to the artificial sampling protocol ({len(true_prev)} evals)')
|
|
|
|
for error in qp.error.QUANTIFICATION_ERROR:
|
|
|
|
score = error(true_prev, estim_prev)
|
|
|
|
print(f'{error.__name__}={score:.5f}')
|
2020-12-10 19:08:22 +01:00
|
|
|
|