forked from moreo/QuaPy
Add example for Bayesian quantification.
This commit is contained in:
parent
25baae643b
commit
020530e14f
|
@ -0,0 +1,189 @@
|
||||||
|
"""
|
||||||
|
This example shows how to use Bayesian quantification (https://arxiv.org/abs/2302.09159),
|
||||||
|
which is suitable for low-data situations and when the uncertainty of the prevalence estimate is of interest.
|
||||||
|
|
||||||
|
For this, we will need to install extra dependencies:
|
||||||
|
|
||||||
|
```
|
||||||
|
$ pip install quapy[bayesian]
|
||||||
|
```
|
||||||
|
|
||||||
|
Running the script via:
|
||||||
|
|
||||||
|
```
|
||||||
|
$ python examples/bayesian_quantification.py
|
||||||
|
```
|
||||||
|
|
||||||
|
will produce a plot `bayesian_quantification.pdf`.
|
||||||
|
|
||||||
|
Due to a low sample size and the fact that classes 2 and 3 are hard to distinguish,
|
||||||
|
it is hard to estimate the proportions accurately, what is visible by looking at the posterior samples,
|
||||||
|
showing large uncertainty.
|
||||||
|
"""
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
from sklearn.ensemble import RandomForestClassifier
|
||||||
|
|
||||||
|
from quapy.method.aggregative import BayesianCC, ACC, PACC
|
||||||
|
from quapy.data import LabelledCollection
|
||||||
|
|
||||||
|
FIGURE_PATH = "bayesian_quantification.pdf"
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class SimulatedData:
|
||||||
|
n_classes: int
|
||||||
|
X_train: np.ndarray
|
||||||
|
Y_train: np.ndarray
|
||||||
|
X_test: np.ndarray
|
||||||
|
Y_test: np.ndarray
|
||||||
|
|
||||||
|
|
||||||
|
def simulate_data(rng) -> SimulatedData:
|
||||||
|
"""Generates a simulated data set with three classes."""
|
||||||
|
cov = np.eye(2)
|
||||||
|
|
||||||
|
n_train = [400, 400, 400]
|
||||||
|
n_test = [40, 25, 15]
|
||||||
|
|
||||||
|
mus = [np.zeros(2), np.array([1, 1.5]), np.array([1.5, 1])]
|
||||||
|
|
||||||
|
X_train = np.concatenate([
|
||||||
|
rng.multivariate_normal(mus[i], cov, size=n_train[i])
|
||||||
|
for i in range(3)
|
||||||
|
])
|
||||||
|
|
||||||
|
X_test = np.concatenate([
|
||||||
|
rng.multivariate_normal(mus[i], cov, size=n_test[i])
|
||||||
|
for i in range(3)
|
||||||
|
])
|
||||||
|
|
||||||
|
Y_train = np.concatenate([[i] * n for i, n in enumerate(n_train)])
|
||||||
|
Y_test = np.concatenate([[i] * n for i, n in enumerate(n_test)])
|
||||||
|
|
||||||
|
return SimulatedData(
|
||||||
|
n_classes=3,
|
||||||
|
X_train=X_train,
|
||||||
|
X_test=X_test,
|
||||||
|
Y_train=Y_train,
|
||||||
|
Y_test=Y_test,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_simulated_data(axs, data: SimulatedData) -> None:
|
||||||
|
"""Plots a simulated data set.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
axs: a list of three `plt.Axes` objects, on which the samples will be plotted.
|
||||||
|
data: the simulated data set.
|
||||||
|
"""
|
||||||
|
xlim = (
|
||||||
|
-0.3 + min(data.X_train[:, 0].min(), data.X_test[:, 0].min()),
|
||||||
|
0.3 + max(data.X_train[:, 0].max(), data.X_test[:, 0].max())
|
||||||
|
)
|
||||||
|
ylim = (
|
||||||
|
-0.3 + min(data.X_train[:, 1].min(), data.X_test[:, 1].min()),
|
||||||
|
0.3 + max(data.X_train[:, 1].max(), data.X_test[:, 1].max())
|
||||||
|
)
|
||||||
|
|
||||||
|
for ax in axs:
|
||||||
|
ax.set_xlabel("$X_1$")
|
||||||
|
ax.set_ylabel("$X_2$")
|
||||||
|
ax.set_aspect("equal")
|
||||||
|
ax.set_xlim(*xlim)
|
||||||
|
ax.set_ylim(*ylim)
|
||||||
|
|
||||||
|
ax = axs[0]
|
||||||
|
ax.set_title("Training set")
|
||||||
|
for i in range(data.n_classes):
|
||||||
|
ax.scatter(data.X_train[data.Y_train == i, 0], data.X_train[data.Y_train == i, 1], c=f"C{i}", s=3, rasterized=True)
|
||||||
|
|
||||||
|
ax = axs[1]
|
||||||
|
ax.set_title("Test set\n(with labels)")
|
||||||
|
for i in range(data.n_classes):
|
||||||
|
ax.scatter(data.X_test[data.Y_test == i, 0], data.X_test[data.Y_test == i, 1], c=f"C{i}", s=3, rasterized=True)
|
||||||
|
|
||||||
|
ax = axs[2]
|
||||||
|
ax.set_title("Test set\n(as observed)")
|
||||||
|
ax.scatter(data.X_test[:, 0], data.X_test[:, 1], c="C5", s=3, rasterized=True)
|
||||||
|
|
||||||
|
def get_random_forest() -> RandomForestClassifier:
|
||||||
|
return RandomForestClassifier(n_estimators=10, random_state=5)
|
||||||
|
|
||||||
|
def train_and_plot_bayesian_quantification(ax: plt.Axes, training: LabelledCollection, test: np.ndarray, n_classes: int) -> None:
|
||||||
|
quantifier = BayesianCC(classifier=get_random_forest())
|
||||||
|
quantifier.fit(training)
|
||||||
|
|
||||||
|
# Obtain mean prediction
|
||||||
|
mean_prediction = quantifier.quantify(test)
|
||||||
|
x_ax = np.arange(n_classes)
|
||||||
|
ax.plot(x_ax, mean_prediction, c="salmon", linewidth=2, linestyle=":", label="Bayesian")
|
||||||
|
|
||||||
|
# Obtain individual samples
|
||||||
|
samples = quantifier.get_prevalence_samples()
|
||||||
|
for sample in samples[::5, :]:
|
||||||
|
ax.plot(x_ax, sample, c="salmon", alpha=0.1, linewidth=0.3, rasterized=True)
|
||||||
|
|
||||||
|
|
||||||
|
def _get_estimate(estimator_class, training: LabelledCollection, test: np.ndarray) -> None:
|
||||||
|
estimator = estimator_class(get_random_forest())
|
||||||
|
estimator.fit(training)
|
||||||
|
return estimator.quantify(test)
|
||||||
|
|
||||||
|
def train_and_plot_acc(ax: plt.Axes, training: LabelledCollection, test: np.ndarray, n_classes: int) -> None:
|
||||||
|
estimate = _get_estimate(ACC, training, test)
|
||||||
|
ax.plot(np.arange(n_classes), estimate, c="darkblue", linewidth=2, linestyle=":", label="ACC")
|
||||||
|
|
||||||
|
|
||||||
|
def train_and_plot_pacc(ax: plt.Axes, training: LabelledCollection, test: np.ndarray, n_classes: int) -> None:
|
||||||
|
estimate = _get_estimate(PACC, training, test)
|
||||||
|
ax.plot(np.arange(n_classes), estimate, c="limegreen", linewidth=2, linestyle=":", label="PACC")
|
||||||
|
|
||||||
|
|
||||||
|
def plot_true_proportions(ax: plt.Axes, test_labels: np.ndarray, n_classes: int) -> None:
|
||||||
|
counts = np.bincount(test_labels, minlength=n_classes)
|
||||||
|
proportion = counts / counts.sum()
|
||||||
|
|
||||||
|
x_ax = np.arange(n_classes)
|
||||||
|
ax.plot(x_ax, proportion, c="black", linewidth=2, label="True")
|
||||||
|
|
||||||
|
ax.set_xlabel("Class")
|
||||||
|
ax.set_ylabel("Prevalence")
|
||||||
|
ax.set_xticks(x_ax, x_ax + 1)
|
||||||
|
ax.set_yticks([0, 0.25, 0.5, 0.75, 1.0])
|
||||||
|
ax.set_xlim(-0.1, n_classes - 0.9)
|
||||||
|
ax.set_ylim(-0.01, 1.01)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
# --- Simulate data ---
|
||||||
|
rng = np.random.default_rng(42)
|
||||||
|
data = simulate_data(rng)
|
||||||
|
|
||||||
|
# --- Plot simulated data ---
|
||||||
|
fig, axs = plt.subplots(1, 4, figsize=(13, 3), dpi=300)
|
||||||
|
for ax in axs:
|
||||||
|
ax.spines[['top', 'right']].set_visible(False)
|
||||||
|
plot_simulated_data(axs[:3], data)
|
||||||
|
|
||||||
|
# --- Plot quantification results ---
|
||||||
|
ax = axs[3]
|
||||||
|
plot_true_proportions(ax, test_labels=data.Y_test, n_classes=data.n_classes)
|
||||||
|
|
||||||
|
training = LabelledCollection(data.X_train, data.Y_train)
|
||||||
|
train_and_plot_acc(ax, training=training, test=data.X_test, n_classes=data.n_classes)
|
||||||
|
train_and_plot_pacc(ax, training=training, test=data.X_test, n_classes=data.n_classes)
|
||||||
|
train_and_plot_bayesian_quantification(ax=ax, training=training, test=data.X_test, n_classes=data.n_classes)
|
||||||
|
|
||||||
|
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left', frameon=False)
|
||||||
|
|
||||||
|
fig.tight_layout()
|
||||||
|
fig.savefig(FIGURE_PATH)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
Reference in New Issue