forked from moreo/QuaPy
quick test kdex
This commit is contained in:
parent
9bdc7676d6
commit
0e81117cfb
|
@ -0,0 +1,50 @@
|
|||
from quapy.method.base import BaseQuantifier
|
||||
import numpy as np
|
||||
from distribution_matching.method.kdey import KDEBase
|
||||
|
||||
import quapy as qp
|
||||
from quapy.data import LabelledCollection
|
||||
import quapy.functional as F
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
|
||||
class KDExML(BaseQuantifier, KDEBase):
|
||||
|
||||
def __init__(self, bandwidth=0.1, standardize=True):
|
||||
self._check_bandwidth(bandwidth)
|
||||
self.bandwidth = bandwidth
|
||||
self.standardize = standardize
|
||||
|
||||
def fit(self, data: LabelledCollection):
|
||||
X, y = data.Xy
|
||||
if self.standardize:
|
||||
self.scaler = StandardScaler()
|
||||
X = self.scaler.fit_transform(X)
|
||||
|
||||
self.mix_densities = self.get_mixture_components(X, y, data.n_classes, self.bandwidth)
|
||||
return self
|
||||
|
||||
def quantify(self, X):
|
||||
"""
|
||||
Searches for the mixture model parameter (the sought prevalence values) that maximizes the likelihood
|
||||
of the data (i.e., that minimizes the negative log-likelihood)
|
||||
|
||||
:param X: instances in the sample
|
||||
:return: a vector of class prevalence estimates
|
||||
"""
|
||||
epsilon = 1e-10
|
||||
n_classes = len(self.mix_densities)
|
||||
if self.standardize:
|
||||
X = self.scaler.transform(X)
|
||||
test_densities = [self.pdf(kde_i, X) for kde_i in self.mix_densities]
|
||||
|
||||
def neg_loglikelihood(prev):
|
||||
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip (prev, test_densities))
|
||||
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||
return -np.sum(test_loglikelihood)
|
||||
|
||||
return F.optim_minimize(neg_loglikelihood, n_classes)
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue