1
0
Fork 0

adding QuaNet to experiments of Twitter; trying new stuff in 'NewMethods'

This commit is contained in:
Alejandro Moreo Fernandez 2021-01-18 19:14:04 +01:00
parent b30c40b7a0
commit 1399125fb8
10 changed files with 353 additions and 29 deletions

37
NewMethods/methods.py Normal file
View File

@ -0,0 +1,37 @@
from typing import Union
import quapy as qp
from quapy.method.aggregative import PACC, EMQ, HDy
import quapy.functional as F
class PACCSLD(PACC):
"""
This method combines the EMQ improved posterior probabilities with PACC.
Note: the posterior probabilities are re-calibrated with EMQ only during prediction, and not also during fit since,
for PACC, the validation split is known to have the same prevalence as the training set (this is because the split
is stratified) and thus the posterior probabilities should not be re-calibrated for a different prior (it actually
happens to degrades performance).
"""
def fit(self, data: qp.data.LabelledCollection, fit_learner=True, val_split:Union[float, int, qp.data.LabelledCollection]=0.4):
self.train_prevalence = F.prevalence_from_labels(data.labels, data.n_classes)
return super(PACCSLD, self).fit(data, fit_learner, val_split)
def aggregate(self, classif_posteriors):
priors, posteriors = EMQ.EM(self.train_prevalence, classif_posteriors, epsilon=1e-4)
return super(PACCSLD, self).aggregate(posteriors)
class HDySLD(HDy):
"""
This method combines the EMQ improved posterior probabilities with HDy.
Note: [same as PACCSLD]
"""
def fit(self, data: qp.data.LabelledCollection, fit_learner=True,
val_split: Union[float, int, qp.data.LabelledCollection] = 0.4):
self.train_prevalence = F.prevalence_from_labels(data.labels, data.n_classes)
return super(HDySLD, self).fit(data, fit_learner, val_split)
def aggregate(self, classif_posteriors):
priors, posteriors = EMQ.EM(self.train_prevalence, classif_posteriors, epsilon=1e-4)
return super(HDySLD, self).aggregate(posteriors)

View File

@ -0,0 +1,48 @@
from sklearn.linear_model import LogisticRegression
import quapy as qp
from classification.methods import PCALR
from method.meta import QuaNet
from quapy.method.aggregative import *
from NewMethods.methods import *
from experiments import run, SAMPLE_SIZE
import numpy as np
import itertools
from joblib import Parallel, delayed
import settings
import argparse
import torch
parser = argparse.ArgumentParser(description='Run experiments for Tweeter Sentiment Quantification')
parser.add_argument('results', metavar='RESULT_PATH', type=str, help='path to the directory where to store the results')
parser.add_argument('svmperfpath', metavar='SVMPERF_PATH', type=str, help='path to the directory with svmperf')
args = parser.parse_args()
def quantification_models():
def newLR():
return LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1)
__C_range = np.logspace(-4, 5, 10)
lr_params = {'C': __C_range, 'class_weight': [None, 'balanced']}
svmperf_params = {'C': __C_range}
#yield 'paccsld', PACCSLD(newLR()), lr_params
#yield 'hdysld', OneVsAll(HDySLD(newLR())), lr_params # <-- promising!
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Running QuaNet in {device}')
yield 'quanet', QuaNet(PCALR(**newLR().get_params()), SAMPLE_SIZE, device=device), lr_params
if __name__ == '__main__':
print(f'Result folder: {args.results}')
np.random.seed(0)
optim_losses = ['mae']
datasets = ['hcr'] # qp.datasets.TWITTER_SENTIMENT_DATASETS_TRAIN
models = quantification_models()
results = Parallel(n_jobs=settings.N_JOBS)(
delayed(run)(experiment) for experiment in itertools.product(optim_losses, datasets, models)
)

View File

@ -0,0 +1,196 @@
import quapy as qp
import numpy as np
from os import makedirs
import sys, os
import pickle
from experiments import result_path
from tabular import Table
tables_path = './tables'
MAXTONE = 50 # sets the intensity of the maximum color reached by the worst (red) and best (green) results
makedirs(tables_path, exist_ok=True)
sample_size = 100
qp.environ['SAMPLE_SIZE'] = sample_size
nice = {
'mae':'AE',
'mrae':'RAE',
'ae':'AE',
'rae':'RAE',
'svmkld': 'SVM(KLD)',
'svmnkld': 'SVM(NKLD)',
'svmq': 'SVM(Q)',
'svmae': 'SVM(AE)',
'svmnae': 'SVM(NAE)',
'svmmae': 'SVM(AE)',
'svmmrae': 'SVM(RAE)',
'quanet': 'QuaNet',
'hdy': 'HDy',
'dys': 'DyS',
'svmperf':'',
'sanders': 'Sanders',
'semeval13': 'SemEval13',
'semeval14': 'SemEval14',
'semeval15': 'SemEval15',
'semeval16': 'SemEval16',
'Average': 'Average'
}
def nicerm(key):
return '\mathrm{'+nice[key]+'}'
def load_Gao_Sebastiani_previous_results():
def rename(method):
old2new = {
'kld': 'svmkld',
'nkld': 'svmnkld',
'qbeta2': 'svmq',
'em': 'sld'
}
return old2new.get(method, method)
gao_seb_results = {}
with open('./Gao_Sebastiani_results.txt', 'rt') as fin:
lines = fin.readlines()
for line in lines[1:]:
line = line.strip()
parts = line.lower().split()
if len(parts) == 4:
dataset, method, ae, rae = parts
else:
method, ae, rae = parts
learner, method = method.split('-')
method = rename(method)
gao_seb_results[f'{dataset}-{method}-ae'] = float(ae)
gao_seb_results[f'{dataset}-{method}-rae'] = float(rae)
return gao_seb_results
def get_ranks_from_Gao_Sebastiani():
gao_seb_results = load_Gao_Sebastiani_previous_results()
datasets = set([key.split('-')[0] for key in gao_seb_results.keys()])
methods = np.sort(np.unique([key.split('-')[1] for key in gao_seb_results.keys()]))
ranks = {}
for metric in ['ae', 'rae']:
for dataset in datasets:
scores = [gao_seb_results[f'{dataset}-{method}-{metric}'] for method in methods]
order = np.argsort(scores)
sorted_methods = methods[order]
for i, method in enumerate(sorted_methods):
ranks[f'{dataset}-{method}-{metric}'] = i+1
for method in methods:
rankave = np.mean([ranks[f'{dataset}-{method}-{metric}'] for dataset in datasets])
ranks[f'Average-{method}-{metric}'] = rankave
return ranks, gao_seb_results
def save_table(path, table):
print(f'saving results in {path}')
with open(path, 'wt') as foo:
foo.write(table)
datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST
evaluation_measures = [qp.error.ae, qp.error.rae]
gao_seb_methods = ['cc', 'acc', 'pcc', 'pacc', 'sld', 'svmq', 'svmkld', 'svmnkld']
new_methods = []
def experiment_errors(dataset, method, loss):
path = result_path(dataset, method, 'm'+loss if not loss.startswith('m') else loss)
if os.path.exists(path):
true_prevs, estim_prevs, _, _, _, _ = pickle.load(open(path, 'rb'))
err_fn = getattr(qp.error, loss)
errors = err_fn(true_prevs, estim_prevs)
return errors
return None
gao_seb_ranks, gao_seb_results = get_ranks_from_Gao_Sebastiani()
for i, eval_func in enumerate(evaluation_measures):
# Tables evaluation scores for AE and RAE (two tables)
# ----------------------------------------------------
eval_name = eval_func.__name__
added_methods = ['svmm' + eval_name] + new_methods
methods = gao_seb_methods + added_methods
nold_methods = len(gao_seb_methods)
nnew_methods = len(added_methods)
# fill data table
table = Table(rows=datasets, cols=methods)
for dataset in datasets:
for method in methods:
table.add(dataset, method, experiment_errors(dataset, method, eval_name))
# write the latex table
tabular = """
\\begin{tabularx}{\\textwidth}{|c||""" + ('Y|'*nold_methods)+ '|' + ('Y|'*nnew_methods) + """} \hline
& \multicolumn{"""+str(nold_methods)+"""}{c||}{Methods tested in~\cite{Gao:2016uq}} &
\multicolumn{"""+str(nnew_methods)+"""}{c|}{} \\\\ \hline
"""
rowreplace={dataset: nice.get(dataset, dataset.upper()) for dataset in datasets}
colreplace={method:'\side{' + nice.get(method, method.upper()) +'$^{' + nicerm(eval_name) + '}$} ' for method in methods}
tabular += table.latexTabular(rowreplace=rowreplace, colreplace=colreplace)
tabular += "\n\end{tabularx}"
save_table(f'./tables/tab_results_{eval_name}.new.tex', tabular)
# Tables ranks for AE and RAE (two tables)
# ----------------------------------------------------
methods = gao_seb_methods
# fill the data table
ranktable = Table(rows=datasets, cols=methods, missing='--')
for dataset in datasets:
for method in methods:
ranktable.add(dataset, method, values=table.get(dataset, method, 'rank'))
# write the latex table
tabular = """
\\begin{tabularx}{\\textwidth}{|c||""" + ('Y|' * len(gao_seb_methods)) + """} \hline
& \multicolumn{""" + str(nold_methods) + """}{c|}{Methods tested in~\cite{Gao:2016uq}} \\\\ \hline
"""
for method in methods:
tabular += ' & \side{' + nice.get(method, method.upper()) +'$^{' + nicerm(eval_name) + '}$} '
tabular += '\\\\\hline\n'
for dataset in datasets:
tabular += nice.get(dataset, dataset.upper()) + ' '
for method in methods:
newrank = ranktable.get(dataset, method)
oldrank = gao_seb_ranks[f'{dataset}-{method}-{eval_name}']
if newrank != '--':
newrank = f'{int(newrank)}'
color = ranktable.get_color(dataset, method)
if color == '--':
color = ''
tabular += ' & ' + f'{newrank}' + f' ({oldrank}) ' + color
tabular += '\\\\\hline\n'
tabular += '\hline\n'
tabular += 'Average '
for method in methods:
newrank = ranktable.get_average(method)
oldrank = gao_seb_ranks[f'Average-{method}-{eval_name}']
if newrank != '--':
newrank = f'{newrank:.1f}'
oldrank = f'{oldrank:.1f}'
color = ranktable.get_average(method, 'color')
if color == '--':
color = ''
tabular += ' & ' + f'{newrank}' + f' ({oldrank}) ' + color
tabular += '\\\\\hline\n'
tabular += "\end{tabularx}"
save_table(f'./tables/tab_rank_{eval_name}.new.tex', tabular)
print("[Done]")

3
NewMethods/settings.py Normal file
View File

@ -0,0 +1,3 @@
import multiprocessing
N_JOBS = -2 #multiprocessing.cpu_count()

View File

@ -1,5 +1,7 @@
from sklearn.linear_model import LogisticRegression
import quapy as qp
from classification.methods import PCALR
from method.meta import QuaNet
from quapy.method.aggregative import CC, ACC, PCC, PACC, EMQ, OneVsAll, SVMQ, SVMKLD, SVMNKLD, SVMAE, SVMRAE, HDy
import quapy.functional as F
import numpy as np
@ -9,12 +11,19 @@ import itertools
from joblib import Parallel, delayed
import settings
import argparse
import torch
import shutil
parser = argparse.ArgumentParser(description='Run experiments for Tweeter Sentiment Quantification')
parser.add_argument('results', metavar='RESULT_PATH', type=str, help='path to the directory where to store the results')
parser.add_argument('svmperfpath', metavar='SVMPERF_PATH', type=str, help='path to the directory with svmperf')
parser.add_argument('--svmperfpath', metavar='SVMPERF_PATH', type=str,default='./svm_perf_quantification',
help='path to the directory with svmperf')
parser.add_argument('--checkpointdir', metavar='PATH', type=str,default='./checkpoint',
help='path to the directory where to dump QuaNet checkpoints')
args = parser.parse_args()
SAMPLE_SIZE = 100
def quantification_models():
def newLR():
@ -38,12 +47,15 @@ def quantification_models():
yield 'svmmrae', OneVsAll(SVMRAE(args.svmperfpath)), svmperf_params
yield 'hdy', OneVsAll(HDy(newLR())), lr_params
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Running QuaNet in {device}')
yield 'quanet', QuaNet(PCALR(**newLR().get_params()), SAMPLE_SIZE, checkpointdir=args.checkpointdir, device=device), lr_params
# to add:
# quapy
# ensembles
#
# 'mlpe': lambda learner: MaximumLikelihoodPrevalenceEstimation(),
# 'mlpe': lambda learner: MaximumLikelihoodPrevalenceEstimation(),
def evaluate_experiment(true_prevalences, estim_prevalences):
@ -83,8 +95,7 @@ def save_results(dataset_name, model_name, optim_loss, *results):
def run(experiment):
sample_size = 100
qp.environ['SAMPLE_SIZE'] = sample_size
qp.environ['SAMPLE_SIZE'] = SAMPLE_SIZE
optim_loss, dataset_name, (model_name, model, hyperparams) = experiment
@ -104,7 +115,7 @@ def run(experiment):
model_selection = qp.model_selection.GridSearchQ(
model,
param_grid=hyperparams,
sample_size=sample_size,
sample_size=SAMPLE_SIZE,
n_prevpoints=21,
n_repetitions=5,
error=optim_loss,
@ -126,7 +137,7 @@ def run(experiment):
true_prevalences, estim_prevalences = qp.evaluation.artificial_sampling_prediction(
model,
test=benchmark_eval.test,
sample_size=sample_size,
sample_size=SAMPLE_SIZE,
n_prevpoints=21,
n_repetitions=25
)
@ -154,4 +165,6 @@ if __name__ == '__main__':
delayed(run)(experiment) for experiment in itertools.product(optim_losses, datasets, models)
)
shutil.rmtree(args.checkpointdir, ignore_errors=True)

View File

@ -98,7 +98,7 @@ def save_table(path, table):
datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST
evaluation_measures = [qp.error.ae, qp.error.rae]
gao_seb_methods = ['cc', 'acc', 'pcc', 'pacc', 'sld', 'svmq', 'svmkld', 'svmnkld']
new_methods = []
new_methods = ['hdy']
def experiment_errors(dataset, method, loss):

View File

@ -7,6 +7,7 @@ from . import evaluation
from . import plot
from . import util
from . import model_selection
from . import classification
from quapy.method.base import isprobabilistic, isaggregative

View File

@ -3,10 +3,14 @@ from sklearn.linear_model import LogisticRegression
class PCALR:
"""
An example of a classification method that also generates embedded inputs, as those required for QuaNet.
This example simply combines a Principal Component Analysis (PCA) with Logistic Regression (LR).
"""
def __init__(self, n_components=300, C=10, class_weight=None):
def __init__(self, n_components=300, **kwargs):
self.n_components = n_components
self.learner = LogisticRegression(C=C, class_weight=class_weight, max_iter=1000)
self.learner = LogisticRegression(**kwargs)
def get_params(self):
params = {'n_components': self.n_components}
@ -19,20 +23,20 @@ class PCALR:
del params['n_components']
self.learner.set_params(**params)
def fit(self, documents, labels):
def fit(self, X, y):
self.pca = TruncatedSVD(self.n_components)
embedded = self.pca.fit_transform(documents, labels)
self.learner.fit(embedded, labels)
embedded = self.pca.fit_transform(X, y)
self.learner.fit(embedded, y)
self.classes_ = self.learner.classes_
return self
def predict(self, documents):
embedded = self.transform(documents)
def predict(self, X):
embedded = self.transform(X)
return self.learner.predict(embedded)
def predict_proba(self, documents):
embedded = self.transform(documents)
def predict_proba(self, X):
embedded = self.transform(X)
return self.learner.predict_proba(embedded)
def transform(self, documents):
return self.pca.transform(documents)
def transform(self, X):
return self.pca.transform(X)

View File

@ -17,7 +17,7 @@ def mae(prevs, prevs_hat):
def ae(p, p_hat):
assert p.shape == p_hat.shape, 'wrong shape'
assert p.shape == p_hat.shape, f'wrong shape {p.shape} vs. {p_hat.shape}'
return abs(p_hat-p).mean(axis=-1)

View File

@ -1,5 +1,6 @@
import os
from pathlib import Path
import random
import torch
from torch.nn import MSELoss
@ -18,12 +19,15 @@ class QuaNetTrainer(BaseQuantifier):
tr_iter_per_poch=200,
va_iter_per_poch=21,
lr=1e-3,
lstm_hidden_size=64,
lstm_nlayers=1,
lstm_hidden_size=128,
lstm_nlayers=2,
ff_layers=[1024, 512],
bidirectional=True,
qdrop_p=0.5,
patience=10, checkpointpath='../checkpoint/quanet.dat', device='cuda'):
patience=10,
checkpointdir='../checkpoint',
checkpointname=None,
device='cuda'):
assert hasattr(learner, 'transform'), \
f'the learner {learner.__class__.__name__} does not seem to be able to produce document embeddings ' \
f'since it does not implement the method "transform"'
@ -45,8 +49,13 @@ class QuaNetTrainer(BaseQuantifier):
}
self.patience = patience
self.checkpointpath = checkpointpath
os.makedirs(Path(checkpointpath).parent, exist_ok=True)
os.makedirs(checkpointdir, exist_ok=True)
if checkpointname is None:
local_random = random.Random()
random_code = '-'.join(str(local_random.randint(0, 1000000)) for _ in range(5))
checkpointname = 'QuaNet-'+random_code
self.checkpointdir = checkpointdir
self.checkpoint = os.path.join(checkpointdir, checkpointname)
self.device = torch.device(device)
self.__check_params_colision(self.quanet_params, self.learner.get_params())
@ -102,7 +111,7 @@ class QuaNetTrainer(BaseQuantifier):
self.optim = torch.optim.Adam(self.quanet.parameters(), lr=self.lr)
early_stop = EarlyStop(self.patience, lower_is_better=True)
checkpoint = self.checkpointpath
checkpoint = self.checkpoint
for epoch_i in range(1, self.n_epochs):
self.epoch(train_data, train_posteriors, self.tr_iter, epoch_i, early_stop, train=True)
@ -124,7 +133,7 @@ class QuaNetTrainer(BaseQuantifier):
label_predictions = np.argmax(posteriors, axis=-1)
prevs_estim = []
for quantifier in self.quantifiers.values():
predictions = posteriors if isprobabilistic(quantifier) else label_predictions
predictions = posteriors if quantifier.probabilistic else label_predictions
prevs_estim.extend(quantifier.aggregate(predictions))
# add the class-conditional predictions P(y'i|yj) from ACC and PACC
@ -139,7 +148,10 @@ class QuaNetTrainer(BaseQuantifier):
quant_estims = self.get_aggregative_estims(posteriors)
self.quanet.eval()
with torch.no_grad():
prevalence = self.quanet.forward(embeddings, posteriors, quant_estims).item()
prevalence = self.quanet.forward(embeddings, posteriors, quant_estims)
if self.device == torch.device('cuda'):
prevalence = prevalence.cpu()
prevalence = prevalence.numpy().flatten()
return prevalence
def epoch(self, data: LabelledCollection, posteriors, iterations, epoch, early_stop, train):
@ -179,7 +191,7 @@ class QuaNetTrainer(BaseQuantifier):
def set_params(self, **parameters):
learner_params={}
for key, val in parameters:
for key, val in parameters.items():
if key in self.quanet_params:
self.quanet_params[key]=val
else:
@ -194,6 +206,14 @@ class QuaNetTrainer(BaseQuantifier):
raise ValueError(f'the use of parameters {intersection} is ambiguous sine those can refer to '
f'the parameters of QuaNet or the learner {self.learner.__class__.__name__}')
def clean_checkpoint(self):
os.remove(self.checkpoint)
def clean_checkpoint_dir(self):
import shutil
shutil.rmtree(self.checkpointdir, ignore_errors=True)
class QuaNetModule(torch.nn.Module):
def __init__(self,
@ -274,3 +294,5 @@ class QuaNetModule(torch.nn.Module):