1
0
Fork 0

documenting quanet

This commit is contained in:
Alejandro Moreo Fernandez 2021-12-15 16:39:57 +01:00
parent 9cf9c73824
commit 164f7d8d5c
6 changed files with 184 additions and 41 deletions

View File

@ -11,6 +11,10 @@ used for evaluating quantification methods.
QuaPy also integrates commonly used datasets and offers visualization tools QuaPy also integrates commonly used datasets and offers visualization tools
for facilitating the analysis and interpretation of results. for facilitating the analysis and interpretation of results.
### Last updates:
* A detailed developer API documentation is now available [here]()!
### Installation ### Installation
```commandline ```commandline

View File

@ -292,8 +292,6 @@
<li><a href="quapy.method.html#quapy.method.meta.ensembleFactory">ensembleFactory() (in module quapy.method.meta)</a> <li><a href="quapy.method.html#quapy.method.meta.ensembleFactory">ensembleFactory() (in module quapy.method.meta)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.meta.EPACC">EPACC() (in module quapy.method.meta)</a> <li><a href="quapy.method.html#quapy.method.meta.EPACC">EPACC() (in module quapy.method.meta)</a>
</li>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetTrainer.epoch">epoch() (quapy.method.neural.QuaNetTrainer method)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.aggregative.EMQ.EPSILON">EPSILON (quapy.method.aggregative.EMQ attribute)</a> <li><a href="quapy.method.html#quapy.method.aggregative.EMQ.EPSILON">EPSILON (quapy.method.aggregative.EMQ attribute)</a>
</li> </li>
@ -390,8 +388,6 @@
<li><a href="quapy.html#quapy.evaluation.gen_prevalence_prediction">gen_prevalence_prediction() (in module quapy.evaluation)</a> <li><a href="quapy.html#quapy.evaluation.gen_prevalence_prediction">gen_prevalence_prediction() (in module quapy.evaluation)</a>
</li> </li>
<li><a href="quapy.html#quapy.evaluation.gen_prevalence_report">gen_prevalence_report() (in module quapy.evaluation)</a> <li><a href="quapy.html#quapy.evaluation.gen_prevalence_report">gen_prevalence_report() (in module quapy.evaluation)</a>
</li>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetTrainer.get_aggregative_estims">get_aggregative_estims() (quapy.method.neural.QuaNetTrainer method)</a>
</li> </li>
<li><a href="quapy.html#quapy.functional.get_nprevpoints_approximation">get_nprevpoints_approximation() (in module quapy.functional)</a> <li><a href="quapy.html#quapy.functional.get_nprevpoints_approximation">get_nprevpoints_approximation() (in module quapy.functional)</a>
</li> </li>
@ -452,8 +448,6 @@
<li><a href="quapy.data.html#quapy.data.preprocessing.index">index() (in module quapy.data.preprocessing)</a> <li><a href="quapy.data.html#quapy.data.preprocessing.index">index() (in module quapy.data.preprocessing)</a>
</li> </li>
<li><a href="quapy.data.html#quapy.data.preprocessing.IndexTransformer">IndexTransformer (class in quapy.data.preprocessing)</a> <li><a href="quapy.data.html#quapy.data.preprocessing.IndexTransformer">IndexTransformer (class in quapy.data.preprocessing)</a>
</li>
<li><a href="quapy.method.html#quapy.method.neural.QuaNetModule.init_hidden">init_hidden() (quapy.method.neural.QuaNetModule method)</a>
</li> </li>
<li><a href="quapy.method.html#quapy.method.base.isaggregative">isaggregative() (in module quapy.method.base)</a> <li><a href="quapy.method.html#quapy.method.base.isaggregative">isaggregative() (in module quapy.method.base)</a>
</li> </li>

Binary file not shown.

View File

@ -1756,6 +1756,24 @@ in terms of this error.</p>
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetModule"> <dt class="sig sig-object py" id="quapy.method.neural.QuaNetModule">
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.neural.</span></span><span class="sig-name descname"><span class="pre">QuaNetModule</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">doc_embedding_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">stats_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_hidden_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">64</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_nlayers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ff_layers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[1024,</span> <span class="pre">512]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bidirectional</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">qdrop_p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">order_by</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetModule" title="Permalink to this definition"></a></dt> <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.neural.</span></span><span class="sig-name descname"><span class="pre">QuaNetModule</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">doc_embedding_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">stats_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_hidden_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">64</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_nlayers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ff_layers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[1024,</span> <span class="pre">512]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bidirectional</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">qdrop_p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">order_by</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetModule" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.module.Module</span></code></p> <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.module.Module</span></code></p>
<p>Implements the <a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/3269206.3269287">QuaNet</a> forward pass.
See <a class="reference internal" href="#quapy.method.neural.QuaNetTrainer" title="quapy.method.neural.QuaNetTrainer"><code class="xref py py-class docutils literal notranslate"><span class="pre">QuaNetTrainer</span></code></a> for training QuaNet.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>doc_embedding_size</strong> integer, the dimensionality of the document embeddings</p></li>
<li><p><strong>n_classes</strong> integer, number of classes</p></li>
<li><p><strong>stats_size</strong> integer, number of statistics estimated by simple quantification methods</p></li>
<li><p><strong>lstm_hidden_size</strong> integer, hidden dimensionality of the LSTM cell</p></li>
<li><p><strong>lstm_nlayers</strong> integer, number of LSTM layers</p></li>
<li><p><strong>ff_layers</strong> list of integers, dimensions of the densely-connected FF layers on top of the
quantification embedding</p></li>
<li><p><strong>bidirectional</strong> boolean, whether or not to use bidirectional LSTM</p></li>
<li><p><strong>qdrop_p</strong> float, dropout probability</p></li>
<li><p><strong>order_by</strong> integer, class for which the document embeddings are to be sorted</p></li>
</ul>
</dd>
</dl>
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetModule.device"> <dt class="sig sig-object py" id="quapy.method.neural.QuaNetModule.device">
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">device</span></span><a class="headerlink" href="#quapy.method.neural.QuaNetModule.device" title="Permalink to this definition"></a></dt> <em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">device</span></span><a class="headerlink" href="#quapy.method.neural.QuaNetModule.device" title="Permalink to this definition"></a></dt>
@ -1775,17 +1793,62 @@ registered hooks while the latter silently ignores them.</p>
</div> </div>
</dd></dl> </dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetModule.init_hidden">
<span class="sig-name descname"><span class="pre">init_hidden</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetModule.init_hidden" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl> </dd></dl>
<dl class="py class"> <dl class="py class">
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer"> <dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer">
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.neural.</span></span><span class="sig-name descname"><span class="pre">QuaNetTrainer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_epochs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tr_iter_per_poch</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">500</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">va_iter_per_poch</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lr</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.001</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_hidden_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">64</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_nlayers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ff_layers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[1024,</span> <span class="pre">512]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bidirectional</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">qdrop_p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">patience</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">checkpointdir</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'../checkpoint'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">checkpointname</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'cuda'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer" title="Permalink to this definition"></a></dt> <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.neural.</span></span><span class="sig-name descname"><span class="pre">QuaNetTrainer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_epochs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tr_iter_per_poch</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">500</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">va_iter_per_poch</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lr</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.001</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_hidden_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">64</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_nlayers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ff_layers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[1024,</span> <span class="pre">512]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bidirectional</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">qdrop_p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">patience</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">checkpointdir</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'../checkpoint'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">checkpointname</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'cuda'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.base.BaseQuantifier</span></code></a></p> <dd><p>Bases: <a class="reference internal" href="#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.base.BaseQuantifier</span></code></a></p>
<p>Implementation of <a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/3269206.3269287">QuaNet</a>, a neural network for
quantification. This implementation uses <a class="reference external" href="https://pytorch.org/">PyTorch</a> and can take advantage of GPU
for speeding-up the training phase.</p>
<p>Example:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">quapy.method.meta</span> <span class="kn">import</span> <span class="n">QuaNet</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">quapy.classification.neural</span> <span class="kn">import</span> <span class="n">NeuralClassifierTrainer</span><span class="p">,</span> <span class="n">CNNnet</span>
<span class="go">&gt;&gt;&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="c1"># use samples of 100 elements</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">qp</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">&#39;SAMPLE_SIZE&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mi">100</span>
<span class="go">&gt;&gt;&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="c1"># load the kindle dataset as text, and convert words to numerical indexes</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">dataset</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_reviews</span><span class="p">(</span><span class="s1">&#39;kindle&#39;</span><span class="p">,</span> <span class="n">pickle</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">qp</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">preprocessing</span><span class="o">.</span><span class="n">index</span><span class="p">(</span><span class="n">dataset</span><span class="p">,</span> <span class="n">min_df</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="go">&gt;&gt;&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="c1"># the text classifier is a CNN trained by NeuralClassifierTrainer</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">cnn</span> <span class="o">=</span> <span class="n">CNNnet</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">vocabulary_size</span><span class="p">,</span> <span class="n">dataset</span><span class="o">.</span><span class="n">n_classes</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">learner</span> <span class="o">=</span> <span class="n">NeuralClassifierTrainer</span><span class="p">(</span><span class="n">cnn</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="go">&gt;&gt;&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="c1"># train QuaNet (QuaNet is an alias to QuaNetTrainer)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">model</span> <span class="o">=</span> <span class="n">QuaNet</span><span class="p">(</span><span class="n">learner</span><span class="p">,</span> <span class="n">qp</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">&#39;SAMPLE_SIZE&#39;</span><span class="p">],</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">training</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">estim_prevalence</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">quantify</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">test</span><span class="o">.</span><span class="n">instances</span><span class="p">)</span>
</pre></div>
</div>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>learner</strong> an object implementing <cite>fit</cite> (i.e., that can be trained on labelled data),
<cite>predict_proba</cite> (i.e., that can generate posterior probabilities of unlabelled examples) and
<cite>transform</cite> (i.e., that can generate embedded representations of the unlabelled instances).</p></li>
<li><p><strong>sample_size</strong> integer, the sample size</p></li>
<li><p><strong>n_epochs</strong> integer, maximum number of training epochs</p></li>
<li><p><strong>tr_iter_per_poch</strong> integer, number of training iterations before considering an epoch complete</p></li>
<li><p><strong>va_iter_per_poch</strong> integer, number of validation iterations to perform after each epoch</p></li>
<li><p><strong>lr</strong> float, the learning rate</p></li>
<li><p><strong>lstm_hidden_size</strong> integer, hidden dimensionality of the LSTM cells</p></li>
<li><p><strong>lstm_nlayers</strong> integer, number of LSTM layers</p></li>
<li><p><strong>ff_layers</strong> list of integers, dimensions of the densely-connected FF layers on top of the
quantification embedding</p></li>
<li><p><strong>bidirectional</strong> boolean, indicates whether the LSTM is bidirectional or not</p></li>
<li><p><strong>qdrop_p</strong> float, dropout probability</p></li>
<li><p><strong>patience</strong> integer, number of epochs showing no improvement in the validation set before stopping the
training phase (early stopping)</p></li>
<li><p><strong>checkpointdir</strong> string, a path where to store models checkpoints</p></li>
<li><p><strong>checkpointname</strong> string (optional), the name of the models checkpoint</p></li>
<li><p><strong>device</strong> string, indicate “cpu” or “cuda”</p></li>
</ul>
</dd>
</dl>
<dl class="py property"> <dl class="py property">
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.classes_"> <dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.classes_">
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.classes_" title="Permalink to this definition"></a></dt> <em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.classes_" title="Permalink to this definition"></a></dt>
@ -1800,17 +1863,14 @@ registered hooks while the latter silently ignores them.</p>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.clean_checkpoint"> <dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.clean_checkpoint">
<span class="sig-name descname"><span class="pre">clean_checkpoint</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.clean_checkpoint" title="Permalink to this definition"></a></dt> <span class="sig-name descname"><span class="pre">clean_checkpoint</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.clean_checkpoint" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd><p>Removes the checkpoint</p>
</dd></dl>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.clean_checkpoint_dir"> <dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.clean_checkpoint_dir">
<span class="sig-name descname"><span class="pre">clean_checkpoint_dir</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.clean_checkpoint_dir" title="Permalink to this definition"></a></dt> <span class="sig-name descname"><span class="pre">clean_checkpoint_dir</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.clean_checkpoint_dir" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd><p>Removes anything contained in the checkpoint directory</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.epoch">
<span class="sig-name descname"><span class="pre">epoch</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">posteriors</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">iterations</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">epoch</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">early_stop</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">train</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.epoch" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.fit"> <dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.fit">
@ -1819,10 +1879,10 @@ registered hooks while the latter silently ignores them.</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple"> <dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> the training data on which to train QuaNet. If fit_learner=True, the data will be split in <li><p><strong>data</strong> the training data on which to train QuaNet. If <cite>fit_learner=True</cite>, the data will be split in
40/40/20 for training the classifier, training QuaNet, and validating QuaNet, respectively. If 40/40/20 for training the classifier, training QuaNet, and validating QuaNet, respectively. If
fit_learner=False, the data will be split in 66/34 for training QuaNet and validating it, respectively.</p></li> <cite>fit_learner=False</cite>, the data will be split in 66/34 for training QuaNet and validating it, respectively.</p></li>
<li><p><strong>fit_learner</strong> if true, trains the classifier on a split containing 40% of the data</p></li> <li><p><strong>fit_learner</strong> if True, trains the classifier on a split containing 40% of the data</p></li>
</ul> </ul>
</dd> </dd>
<dt class="field-even">Returns</dt> <dt class="field-even">Returns</dt>
@ -1831,11 +1891,6 @@ fit_learner=False, the data will be split in 66/34 for training QuaNet and valid
</dl> </dl>
</dd></dl> </dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.get_aggregative_estims">
<span class="sig-name descname"><span class="pre">get_aggregative_estims</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">posteriors</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.get_aggregative_estims" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.get_params"> <dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.get_params">
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.get_params" title="Permalink to this definition"></a></dt> <span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.get_params" title="Permalink to this definition"></a></dt>
@ -1852,7 +1907,7 @@ fit_learner=False, the data will be split in 66/34 for training QuaNet and valid
<dl class="py method"> <dl class="py method">
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.quantify"> <dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.quantify">
<span class="sig-name descname"><span class="pre">quantify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.quantify" title="Permalink to this definition"></a></dt> <span class="sig-name descname"><span class="pre">quantify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.quantify" title="Permalink to this definition"></a></dt>
<dd><p>Generate class prevalence estimates for the samples instances</p> <dd><p>Generate class prevalence estimates for the samples instances</p>
<dl class="field-list simple"> <dl class="field-list simple">
<dt class="field-odd">Parameters</dt> <dt class="field-odd">Parameters</dt>
@ -1880,7 +1935,19 @@ fit_learner=False, the data will be split in 66/34 for training QuaNet and valid
<dl class="py function"> <dl class="py function">
<dt class="sig sig-object py" id="quapy.method.neural.mae_loss"> <dt class="sig sig-object py" id="quapy.method.neural.mae_loss">
<span class="sig-prename descclassname"><span class="pre">quapy.method.neural.</span></span><span class="sig-name descname"><span class="pre">mae_loss</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">output</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.mae_loss" title="Permalink to this definition"></a></dt> <span class="sig-prename descclassname"><span class="pre">quapy.method.neural.</span></span><span class="sig-name descname"><span class="pre">mae_loss</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">output</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.mae_loss" title="Permalink to this definition"></a></dt>
<dd></dd></dl> <dd><p>Torch-like wrapper for the Mean Absolute Error</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>output</strong> predictions</p></li>
<li><p><strong>target</strong> ground truth values</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>mean absolute error loss</p>
</dd>
</dl>
</dd></dl>
</section> </section>
<section id="module-quapy.method.non_aggregative"> <section id="module-quapy.method.non_aggregative">

File diff suppressed because one or more lines are too long

View File

@ -11,6 +11,53 @@ from quapy.util import EarlyStop
class QuaNetTrainer(BaseQuantifier): class QuaNetTrainer(BaseQuantifier):
"""
Implementation of `QuaNet <https://dl.acm.org/doi/abs/10.1145/3269206.3269287>`_, a neural network for
quantification. This implementation uses `PyTorch <https://pytorch.org/>`_ and can take advantage of GPU
for speeding-up the training phase.
Example:
>>> import quapy as qp
>>> from quapy.method.meta import QuaNet
>>> from quapy.classification.neural import NeuralClassifierTrainer, CNNnet
>>>
>>> # use samples of 100 elements
>>> qp.environ['SAMPLE_SIZE'] = 100
>>>
>>> # load the kindle dataset as text, and convert words to numerical indexes
>>> dataset = qp.datasets.fetch_reviews('kindle', pickle=True)
>>> qp.data.preprocessing.index(dataset, min_df=5, inplace=True)
>>>
>>> # the text classifier is a CNN trained by NeuralClassifierTrainer
>>> cnn = CNNnet(dataset.vocabulary_size, dataset.n_classes)
>>> learner = NeuralClassifierTrainer(cnn, device='cuda')
>>>
>>> # train QuaNet (QuaNet is an alias to QuaNetTrainer)
>>> model = QuaNet(learner, qp.environ['SAMPLE_SIZE'], device='cuda')
>>> model.fit(dataset.training)
>>> estim_prevalence = model.quantify(dataset.test.instances)
:param learner: an object implementing `fit` (i.e., that can be trained on labelled data),
`predict_proba` (i.e., that can generate posterior probabilities of unlabelled examples) and
`transform` (i.e., that can generate embedded representations of the unlabelled instances).
:param sample_size: integer, the sample size
:param n_epochs: integer, maximum number of training epochs
:param tr_iter_per_poch: integer, number of training iterations before considering an epoch complete
:param va_iter_per_poch: integer, number of validation iterations to perform after each epoch
:param lr: float, the learning rate
:param lstm_hidden_size: integer, hidden dimensionality of the LSTM cells
:param lstm_nlayers: integer, number of LSTM layers
:param ff_layers: list of integers, dimensions of the densely-connected FF layers on top of the
quantification embedding
:param bidirectional: boolean, indicates whether the LSTM is bidirectional or not
:param qdrop_p: float, dropout probability
:param patience: integer, number of epochs showing no improvement in the validation set before stopping the
training phase (early stopping)
:param checkpointdir: string, a path where to store models' checkpoints
:param checkpointname: string (optional), the name of the model's checkpoint
:param device: string, indicate "cpu" or "cuda"
"""
def __init__(self, def __init__(self,
learner, learner,
@ -28,6 +75,7 @@ class QuaNetTrainer(BaseQuantifier):
checkpointdir='../checkpoint', checkpointdir='../checkpoint',
checkpointname=None, checkpointname=None,
device='cuda'): device='cuda'):
assert hasattr(learner, 'transform'), \ assert hasattr(learner, 'transform'), \
f'the learner {learner.__class__.__name__} does not seem to be able to produce document embeddings ' \ f'the learner {learner.__class__.__name__} does not seem to be able to produce document embeddings ' \
f'since it does not implement the method "transform"' f'since it does not implement the method "transform"'
@ -64,10 +112,10 @@ class QuaNetTrainer(BaseQuantifier):
""" """
Trains QuaNet. Trains QuaNet.
:param data: the training data on which to train QuaNet. If fit_learner=True, the data will be split in :param data: the training data on which to train QuaNet. If `fit_learner=True`, the data will be split in
40/40/20 for training the classifier, training QuaNet, and validating QuaNet, respectively. If 40/40/20 for training the classifier, training QuaNet, and validating QuaNet, respectively. If
fit_learner=False, the data will be split in 66/34 for training QuaNet and validating it, respectively. `fit_learner=False`, the data will be split in 66/34 for training QuaNet and validating it, respectively.
:param fit_learner: if true, trains the classifier on a split containing 40% of the data :param fit_learner: if True, trains the classifier on a split containing 40% of the data
:return: self :return: self
""" """
self._classes_ = data.classes_ self._classes_ = data.classes_
@ -125,8 +173,8 @@ class QuaNetTrainer(BaseQuantifier):
checkpoint = self.checkpoint checkpoint = self.checkpoint
for epoch_i in range(1, self.n_epochs): for epoch_i in range(1, self.n_epochs):
self.epoch(train_data_embed, train_posteriors, self.tr_iter, epoch_i, early_stop, train=True) self._epoch(train_data_embed, train_posteriors, self.tr_iter, epoch_i, early_stop, train=True)
self.epoch(valid_data_embed, valid_posteriors, self.va_iter, epoch_i, early_stop, train=False) self._epoch(valid_data_embed, valid_posteriors, self.va_iter, epoch_i, early_stop, train=False)
early_stop(self.status['va-loss'], epoch_i) early_stop(self.status['va-loss'], epoch_i)
if early_stop.IMPROVED: if early_stop.IMPROVED:
@ -139,7 +187,7 @@ class QuaNetTrainer(BaseQuantifier):
return self return self
def get_aggregative_estims(self, posteriors): def _get_aggregative_estims(self, posteriors):
label_predictions = np.argmax(posteriors, axis=-1) label_predictions = np.argmax(posteriors, axis=-1)
prevs_estim = [] prevs_estim = []
for quantifier in self.quantifiers.values(): for quantifier in self.quantifiers.values():
@ -150,10 +198,10 @@ class QuaNetTrainer(BaseQuantifier):
return prevs_estim return prevs_estim
def quantify(self, instances, *args): def quantify(self, instances):
posteriors = self.learner.predict_proba(instances) posteriors = self.learner.predict_proba(instances)
embeddings = self.learner.transform(instances) embeddings = self.learner.transform(instances)
quant_estims = self.get_aggregative_estims(posteriors) quant_estims = self._get_aggregative_estims(posteriors)
self.quanet.eval() self.quanet.eval()
with torch.no_grad(): with torch.no_grad():
prevalence = self.quanet.forward(embeddings, posteriors, quant_estims) prevalence = self.quanet.forward(embeddings, posteriors, quant_estims)
@ -162,7 +210,7 @@ class QuaNetTrainer(BaseQuantifier):
prevalence = prevalence.numpy().flatten() prevalence = prevalence.numpy().flatten()
return prevalence return prevalence
def epoch(self, data: LabelledCollection, posteriors, iterations, epoch, early_stop, train): def _epoch(self, data: LabelledCollection, posteriors, iterations, epoch, early_stop, train):
mse_loss = MSELoss() mse_loss = MSELoss()
self.quanet.train(mode=train) self.quanet.train(mode=train)
@ -181,7 +229,7 @@ class QuaNetTrainer(BaseQuantifier):
for it, index in enumerate(pbar): for it, index in enumerate(pbar):
sample_data = data.sampling_from_index(index) sample_data = data.sampling_from_index(index)
sample_posteriors = posteriors[index] sample_posteriors = posteriors[index]
quant_estims = self.get_aggregative_estims(sample_posteriors) quant_estims = self._get_aggregative_estims(sample_posteriors)
ptrue = torch.as_tensor([sample_data.prevalence()], dtype=torch.float, device=self.device) ptrue = torch.as_tensor([sample_data.prevalence()], dtype=torch.float, device=self.device)
if train: if train:
self.optim.zero_grad() self.optim.zero_grad()
@ -236,9 +284,15 @@ class QuaNetTrainer(BaseQuantifier):
f'the parameters of QuaNet or the learner {self.learner.__class__.__name__}') f'the parameters of QuaNet or the learner {self.learner.__class__.__name__}')
def clean_checkpoint(self): def clean_checkpoint(self):
"""
Removes the checkpoint
"""
os.remove(self.checkpoint) os.remove(self.checkpoint)
def clean_checkpoint_dir(self): def clean_checkpoint_dir(self):
"""
Removes anything contained in the checkpoint directory
"""
import shutil import shutil
shutil.rmtree(self.checkpointdir, ignore_errors=True) shutil.rmtree(self.checkpointdir, ignore_errors=True)
@ -248,10 +302,33 @@ class QuaNetTrainer(BaseQuantifier):
def mae_loss(output, target): def mae_loss(output, target):
"""
Torch-like wrapper for the Mean Absolute Error
:param output: predictions
:param target: ground truth values
:return: mean absolute error loss
"""
return torch.mean(torch.abs(output - target)) return torch.mean(torch.abs(output - target))
class QuaNetModule(torch.nn.Module): class QuaNetModule(torch.nn.Module):
"""
Implements the `QuaNet <https://dl.acm.org/doi/abs/10.1145/3269206.3269287>`_ forward pass.
See :class:`QuaNetTrainer` for training QuaNet.
:param doc_embedding_size: integer, the dimensionality of the document embeddings
:param n_classes: integer, number of classes
:param stats_size: integer, number of statistics estimated by simple quantification methods
:param lstm_hidden_size: integer, hidden dimensionality of the LSTM cell
:param lstm_nlayers: integer, number of LSTM layers
:param ff_layers: list of integers, dimensions of the densely-connected FF layers on top of the
quantification embedding
:param bidirectional: boolean, whether or not to use bidirectional LSTM
:param qdrop_p: float, dropout probability
:param order_by: integer, class for which the document embeddings are to be sorted
"""
def __init__(self, def __init__(self,
doc_embedding_size, doc_embedding_size,
n_classes, n_classes,
@ -262,6 +339,7 @@ class QuaNetModule(torch.nn.Module):
bidirectional=True, bidirectional=True,
qdrop_p=0.5, qdrop_p=0.5,
order_by=0): order_by=0):
super().__init__() super().__init__()
self.n_classes = n_classes self.n_classes = n_classes
@ -289,7 +367,7 @@ class QuaNetModule(torch.nn.Module):
def device(self): def device(self):
return torch.device('cuda') if next(self.parameters()).is_cuda else torch.device('cpu') return torch.device('cuda') if next(self.parameters()).is_cuda else torch.device('cpu')
def init_hidden(self): def _init_hidden(self):
directions = 2 if self.bidirectional else 1 directions = 2 if self.bidirectional else 1
var_hidden = torch.zeros(self.nlayers * directions, 1, self.hidden_size) var_hidden = torch.zeros(self.nlayers * directions, 1, self.hidden_size)
var_cell = torch.zeros(self.nlayers * directions, 1, self.hidden_size) var_cell = torch.zeros(self.nlayers * directions, 1, self.hidden_size)
@ -315,7 +393,7 @@ class QuaNetModule(torch.nn.Module):
embeded_posteriors = embeded_posteriors.unsqueeze(0) embeded_posteriors = embeded_posteriors.unsqueeze(0)
self.lstm.flatten_parameters() self.lstm.flatten_parameters()
_, (rnn_hidden,_) = self.lstm(embeded_posteriors, self.init_hidden()) _, (rnn_hidden,_) = self.lstm(embeded_posteriors, self._init_hidden())
rnn_hidden = rnn_hidden.view(self.nlayers, self.ndirections, 1, self.hidden_size) rnn_hidden = rnn_hidden.view(self.nlayers, self.ndirections, 1, self.hidden_size)
quant_embedding = rnn_hidden[0].view(-1) quant_embedding = rnn_hidden[0].view(-1)
quant_embedding = torch.cat((quant_embedding, statistics)) quant_embedding = torch.cat((quant_embedding, statistics))