forked from moreo/QuaPy
fine grained sld updates...
This commit is contained in:
commit
252e143ef6
|
@ -25,13 +25,13 @@ method_names, true_prevs, estim_prevs, tr_prevs = [], [], [], []
|
|||
for model, model_name in [
|
||||
(CC(cls), 'CC'),
|
||||
# (FakeFGLSD(cls, nbins=20, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-20'),
|
||||
(FakeFGLSD(cls, nbins=11, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-11'),
|
||||
#(FakeFGLSD(cls, nbins=11, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-11'),
|
||||
#(FakeFGLSD(cls, nbins=8, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-8'),
|
||||
#(FakeFGLSD(cls, nbins=6, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-6'),
|
||||
(FakeFGLSD(cls, nbins=5, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-5'),
|
||||
#(FakeFGLSD(cls, nbins=4, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-4'),
|
||||
(FakeFGLSD(cls, nbins=3, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-3'),
|
||||
# (FakeFGLSD(cls, nbins=1, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-1'),
|
||||
#(FakeFGLSD(cls, nbins=3, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-3'),
|
||||
(FakeFGLSD(cls, nbins=1, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-1'),
|
||||
# (FakeFGLSD(cls, nbins=3, isomerous=False, recompute_bins=False), 'FGSLD-isometric-sta-3'),
|
||||
(EMQ(cls), 'SLD'),
|
||||
]:
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 238 KiB After Width: | Height: | Size: 179 KiB |
|
@ -1,174 +0,0 @@
|
|||
import numpy as np
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.decomposition import PCA
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
import quapy as qp
|
||||
from typing import Union
|
||||
|
||||
from quapy.data import LabelledCollection
|
||||
from quapy.method.base import BaseQuantifier, BinaryQuantifier
|
||||
from quapy.method.aggregative import PACC, EMQ, HDy
|
||||
import quapy.functional as F
|
||||
from tqdm import tqdm
|
||||
from scipy.sparse import issparse, csr_matrix
|
||||
import scipy
|
||||
|
||||
|
||||
class PACCSLD(PACC):
|
||||
"""
|
||||
This method combines the EMQ improved posterior probabilities with PACC.
|
||||
Note: the posterior probabilities are re-calibrated with EMQ only during prediction, and not also during fit since,
|
||||
for PACC, the validation split is known to have the same prevalence as the training set (this is because the split
|
||||
is stratified) and thus the posterior probabilities should not be re-calibrated for a different prior (it actually
|
||||
happens to degrades performance).
|
||||
"""
|
||||
|
||||
def fit(self, data: qp.data.LabelledCollection, fit_learner=True, val_split:Union[float, int, qp.data.LabelledCollection]=0.4):
|
||||
self.train_prevalence = F.prevalence_from_labels(data.labels, data.n_classes)
|
||||
return super(PACCSLD, self).fit(data, fit_learner, val_split)
|
||||
|
||||
def aggregate(self, classif_posteriors):
|
||||
priors, posteriors = EMQ.EM(self.train_prevalence, classif_posteriors, epsilon=1e-4)
|
||||
return super(PACCSLD, self).aggregate(posteriors)
|
||||
|
||||
|
||||
class HDySLD(HDy):
|
||||
"""
|
||||
This method combines the EMQ improved posterior probabilities with HDy.
|
||||
Note: [same as PACCSLD]
|
||||
"""
|
||||
def fit(self, data: qp.data.LabelledCollection, fit_learner=True,
|
||||
val_split: Union[float, int, qp.data.LabelledCollection] = 0.4):
|
||||
self.train_prevalence = F.prevalence_from_labels(data.labels, data.n_classes)
|
||||
return super(HDySLD, self).fit(data, fit_learner, val_split)
|
||||
|
||||
def aggregate(self, classif_posteriors):
|
||||
priors, posteriors = EMQ.EM(self.train_prevalence, classif_posteriors, epsilon=1e-4)
|
||||
return super(HDySLD, self).aggregate(posteriors)
|
||||
|
||||
|
||||
|
||||
class AveragePoolQuantification(BinaryQuantifier):
|
||||
def __init__(self, learner, sample_size, trials, n_components=-1, zscore=False):
|
||||
self.learner = learner
|
||||
self.sample_size = sample_size
|
||||
self.trials = trials
|
||||
|
||||
self.do_zscore = zscore
|
||||
self.zscore = StandardScaler() if self.do_zscore else None
|
||||
|
||||
self.do_pca = n_components>0
|
||||
self.pca = PCA(n_components) if self.do_pca else None
|
||||
|
||||
def fit(self, data: LabelledCollection):
|
||||
training, validation = data.split_stratified(train_prop=0.7)
|
||||
|
||||
X, y = [], []
|
||||
|
||||
nprevpoints = F.get_nprevpoints_approximation(self.trials, data.n_classes)
|
||||
for sample in tqdm(
|
||||
training.artificial_sampling_generator(self.sample_size, n_prevalences=nprevpoints, repeats=1),
|
||||
desc='generating averages'
|
||||
):
|
||||
X.append(sample.instances.mean(axis=0))
|
||||
y.append(sample.prevalence()[1])
|
||||
while len(X) < self.trials:
|
||||
sample = training.sampling(self.sample_size, F.uniform_simplex_sampling(data.n_classes))
|
||||
X.append(sample.instances.mean(axis=0))
|
||||
y.append(sample.prevalence())
|
||||
X = np.asarray(np.vstack(X))
|
||||
y = np.asarray(y)
|
||||
|
||||
if self.do_pca:
|
||||
X = self.pca.fit_transform(X)
|
||||
print(X.shape)
|
||||
|
||||
if self.do_zscore:
|
||||
X = self.zscore.fit_transform(X)
|
||||
|
||||
print('training regressor...')
|
||||
self.regressor = self.learner.fit(X, y)
|
||||
|
||||
# correction at 0:
|
||||
print('getting corrections...')
|
||||
X0 = np.asarray(np.vstack([validation.sampling(self.sample_size, 0., shuffle=False).instances.mean(axis=0) for _ in range(100)]))
|
||||
X1 = np.asarray(np.vstack([validation.sampling(self.sample_size, 1., shuffle=False).instances.mean(axis=0) for _ in range(100)]))
|
||||
|
||||
if self.do_pca:
|
||||
X0 = self.pca.transform(X0)
|
||||
X1 = self.pca.transform(X1)
|
||||
|
||||
if self.do_zscore:
|
||||
X0 = self.zscore.transform(X0)
|
||||
X1 = self.zscore.transform(X1)
|
||||
|
||||
self.correction_0 = self.regressor.predict(X0).mean()
|
||||
self.correction_1 = self.regressor.predict(X1).mean()
|
||||
|
||||
print('correction-0', self.correction_0)
|
||||
print('correction-1', self.correction_1)
|
||||
print('done')
|
||||
|
||||
def quantify(self, instances):
|
||||
ave = np.asarray(instances.mean(axis=0))
|
||||
|
||||
if self.do_pca:
|
||||
ave = self.pca.transform(ave)
|
||||
if self.do_zscore:
|
||||
ave = self.zscore.transform(ave)
|
||||
phat = self.regressor.predict(ave).item()
|
||||
phat = np.clip((phat-self.correction_0)/(self.correction_1-self.correction_0), 0, 1)
|
||||
return np.asarray([1-phat, phat])
|
||||
|
||||
def set_params(self, **parameters):
|
||||
self.learner.set_params(**parameters)
|
||||
|
||||
def get_params(self, deep=True):
|
||||
return self.learner.get_params(deep=deep)
|
||||
|
||||
|
||||
class WinnowOrthogonal(BaseEstimator):
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def fit(self, X, y):
|
||||
self.classes_ = np.asarray(sorted(np.unique(y)))
|
||||
w1 = np.asarray(X[y == 0].mean(axis=0)).flatten()
|
||||
w2 = np.asarray(X[y == 1].mean(axis=0)).flatten()
|
||||
diff = w2 - w1
|
||||
orth = np.ones_like(diff)
|
||||
orth[0] = -diff[1:].sum() / diff[0]
|
||||
orth /= np.linalg.norm(orth)
|
||||
self.w = orth
|
||||
self.b = w1.dot(orth)
|
||||
return self
|
||||
|
||||
def decision_function(self, X):
|
||||
if issparse(X):
|
||||
Z = X.dot(csr_matrix(self.w).T).toarray().flatten()
|
||||
return Z - self.b
|
||||
else:
|
||||
return np.matmul(X, self.w) - self.b
|
||||
|
||||
def predict(self, X):
|
||||
return 1 * (self.decision_function(X) > 0)
|
||||
|
||||
def split(self, X, y):
|
||||
s = self.predict(X)
|
||||
X0a = X[np.logical_and(y == 0, s == 0)]
|
||||
X0b = X[np.logical_and(y == 0, s == 1)]
|
||||
X1a = X[np.logical_and(y == 1, s == 0)]
|
||||
X1b = X[np.logical_and(y == 1, s == 1)]
|
||||
y0a = np.zeros(X0a.shape[0], dtype=np.int)
|
||||
y0b = np.zeros(X0b.shape[0], dtype=np.int)
|
||||
y1a = np.ones(X1a.shape[0], dtype=np.int)
|
||||
y1b = np.ones(X1b.shape[0], dtype=np.int)
|
||||
return X0a, X0b, X1a, X1b, y0a, y0b, y1a, y1b
|
||||
|
||||
def get_params(self):
|
||||
return {}
|
||||
|
||||
def set_params(self, **params):
|
||||
pass
|
47
TODO.txt
47
TODO.txt
|
@ -1,16 +1,55 @@
|
|||
Packaging:
|
||||
==========================================
|
||||
Documentation with sphinx
|
||||
Document methods with paper references
|
||||
allow for "pip install"
|
||||
unit-tests
|
||||
|
||||
New features:
|
||||
==========================================
|
||||
Add NAE, NRAE
|
||||
Add "measures for evaluating ordinal"?
|
||||
Document methods with paper references
|
||||
Add datasets for topic.
|
||||
Do we want to cover cross-lingual quantification natively in QuaPy, or does it make more sense as an application on top?
|
||||
|
||||
Current issues:
|
||||
==========================================
|
||||
In binary quantification (hp, kindle, imdb) we used F1 in the minority class (which in kindle and hp happens to be the
|
||||
negative class). This is not covered in this new implementation, in which the binary case is not treated as such, but as
|
||||
an instance of single-label with 2 labels. Check
|
||||
Add classnames to LabelledCollection ?
|
||||
Add classnames to LabelledCollection? This should improve visualization of reports
|
||||
Add automatic reindex of class labels in LabelledCollection (currently, class indexes should be ordered and with no gaps)
|
||||
Add datasets for topic.
|
||||
OVR I believe is currently tied to aggregative methods. We should provide a general interface also for general quantifiers
|
||||
Currently, being "binary" only adds one checker; we should figure out how to impose the check to be automatically performed
|
||||
|
||||
Improvements:
|
||||
==========================================
|
||||
Clarify whether QuaNet is an aggregative method or not.
|
||||
Explore the hyperparameter "number of bins" in HDy
|
||||
Rename EMQ to SLD ?
|
||||
Parallelize the kFCV in ACC and PACC?
|
||||
Parallelize model selection trainings
|
||||
We might want to think of (improving and) adding the class Tabular (it is defined and used on branch tweetsent). A more
|
||||
recent version is in the project ql4facct. This class is meant to generate latex tables from results (highligting
|
||||
best results, computing statistical tests, colouring cells, producing rankings, producing averages, etc.). Trying
|
||||
to generate tables is typically a bad idea, but in this specific case we do have pretty good control of what an
|
||||
experiment looks like. (Do we want to abstract experimental results? this could be useful not only for tables but
|
||||
also for plots).
|
||||
|
||||
Checks:
|
||||
==========================================
|
||||
How many times is the system of equations for ACC and PACC not solved? How many times is it clipped? Do they sum up
|
||||
to one always?
|
||||
Parallelize the kFCV in ACC and PACC
|
||||
Re-check how hyperparameters from the quantifier and hyperparameters from the classifier (in aggregative quantifiers)
|
||||
is handled. In scikit-learn the hyperparameters from a wrapper method are indicated directly whereas the hyperparams
|
||||
from the internal learner are prefixed with "estimator__". In QuaPy, combinations having to do with the classifier
|
||||
can be computed at the begining, and then in an internal loop the hyperparams of the quantifier can be explored,
|
||||
passing fit_learner=False.
|
||||
Re-check Ensembles. As for now, they are strongly tied to aggregative quantifiers.
|
||||
Re-think the environment variables. Maybe add new ones (like, for example, parameters for the plots)
|
||||
Do we want to wrap prevalences (currently simple np.ndarray) as a class? This might be convenient for some interfaces
|
||||
(e.g., for specifying artificial prevalences in samplings, for printing them -- currently supported through
|
||||
F.strprev(), etc.). This might however add some overload, and prevent/difficult post processing with numpy.
|
||||
Would be nice to get a better integration with sklearn.
|
||||
|
||||
|
||||
|
|
|
@ -1,48 +0,0 @@
|
|||
from sklearn.model_selection import GridSearchCV
|
||||
import numpy as np
|
||||
import quapy as qp
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
|
||||
sample_size = 500
|
||||
qp.environ['SAMPLE_SIZE'] = sample_size
|
||||
|
||||
|
||||
|
||||
def gen_data():
|
||||
|
||||
data = qp.datasets.fetch_reviews('kindle', tfidf=True, min_df=5)
|
||||
|
||||
models = [
|
||||
qp.method.aggregative.CC,
|
||||
qp.method.aggregative.ACC,
|
||||
qp.method.aggregative.PCC,
|
||||
qp.method.aggregative.PACC,
|
||||
qp.method.aggregative.HDy,
|
||||
qp.method.aggregative.EMQ,
|
||||
qp.method.meta.ECC,
|
||||
qp.method.meta.EACC,
|
||||
qp.method.meta.EHDy,
|
||||
]
|
||||
|
||||
method_names, true_prevs, estim_prevs, tr_prevs = [], [], [], []
|
||||
for Quantifier in models:
|
||||
print(f'training {Quantifier.__name__}')
|
||||
lr = LogisticRegression(max_iter=1000, class_weight='balanced')
|
||||
# lr = GridSearchCV(lr, param_grid={'C':np.logspace(-3,3,7)}, n_jobs=-1)
|
||||
model = Quantifier(lr).fit(data.training)
|
||||
true_prev, estim_prev = qp.evaluation.artificial_sampling_prediction(
|
||||
model, data.test, sample_size, n_repetitions=20, n_prevpoints=11)
|
||||
|
||||
method_names.append(Quantifier.__name__)
|
||||
true_prevs.append(true_prev)
|
||||
estim_prevs.append(estim_prev)
|
||||
tr_prevs.append(data.training.prevalence())
|
||||
|
||||
return method_names, true_prevs, estim_prevs, tr_prevs
|
||||
|
||||
method_names, true_prevs, estim_prevs, tr_prevs = qp.util.pickled_resource('./plots/plot_data.pkl', gen_data)
|
||||
|
||||
qp.plot.error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=11, savepath='./plots/err_drift.png')
|
||||
qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, savepath='./plots/bin_diag.png')
|
||||
qp.plot.binary_bias_global(method_names, true_prevs, estim_prevs, savepath='./plots/bin_bias.png')
|
||||
qp.plot.binary_bias_bins(method_names, true_prevs, estim_prevs, nbins=11, savepath='./plots/bin_bias_bin.png')
|
|
@ -10,7 +10,7 @@ from sklearn.model_selection import StratifiedKFold
|
|||
|
||||
import pandas as pd
|
||||
|
||||
from data.base import Dataset, LabelledCollection
|
||||
from quapy.data.base import Dataset, LabelledCollection
|
||||
from quapy.data.preprocessing import text2tfidf, reduce_columns
|
||||
from quapy.data.reader import *
|
||||
from quapy.util import download_file_if_not_exists, download_file, get_quapy_home, pickled_resource
|
||||
|
|
|
@ -5,7 +5,7 @@ from typing import Union, Callable
|
|||
|
||||
import quapy as qp
|
||||
import quapy.functional as F
|
||||
from data.base import LabelledCollection
|
||||
from quapy.data.base import LabelledCollection
|
||||
from quapy.evaluation import artificial_sampling_prediction
|
||||
from quapy.method.aggregative import BaseQuantifier
|
||||
|
||||
|
|
|
@ -83,21 +83,21 @@ def binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=1, title=N
|
|||
binwidth = 1/nbins
|
||||
data = {}
|
||||
for method, true_prev, estim_prev in zip(method_names, true_prevs, estim_prevs):
|
||||
true_prev = true_prev[:,pos_class]
|
||||
estim_prev = estim_prev[:,pos_class]
|
||||
true_prev = true_prev[:, pos_class]
|
||||
estim_prev = estim_prev[:, pos_class]
|
||||
|
||||
data[method] = []
|
||||
inds = np.digitize(true_prev, bins, right=True)
|
||||
inds = np.digitize(true_prev, bins[1:], right=True)
|
||||
for ind in range(len(bins)):
|
||||
selected = inds==ind
|
||||
data[method].append(estim_prev[selected] - true_prev[selected])
|
||||
|
||||
nmethods = len(method_names)
|
||||
boxwidth = binwidth/(nmethods+4)
|
||||
for i,bin in enumerate(bins[:-1]):
|
||||
for i,bin in enumerate(bins):
|
||||
boxdata = [data[method][i] for method in method_names]
|
||||
positions = [bin+(i*boxwidth)+2*boxwidth for i,_ in enumerate(method_names)]
|
||||
box = boxplot(boxdata, showmeans=False, positions=positions, widths = boxwidth, sym='+', patch_artist=True)
|
||||
box = boxplot(boxdata, showmeans=False, positions=positions, widths=boxwidth, sym='+', patch_artist=True)
|
||||
for boxid in range(len(method_names)):
|
||||
c = colormap.colors[boxid%len(colormap.colors)]
|
||||
setp(box['fliers'][boxid], color=c, marker='+', markersize=3., markeredgecolor=c)
|
||||
|
@ -110,7 +110,7 @@ def binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=1, title=N
|
|||
major_xticks_positions.append(b)
|
||||
minor_xticks_positions.append(b + binwidth / 2)
|
||||
major_xticks_labels.append('')
|
||||
minor_xticks_labels.append(f'[{bins[i]:.2f}-{bins[i + 1]:.2f})')
|
||||
minor_xticks_labels.append(f'[{bins[i]:.2f}-{bins[i + 1]:.2f}' + (')' if i < len(bins)-2 else ']'))
|
||||
ax.set_xticks(major_xticks_positions)
|
||||
ax.set_xticks(minor_xticks_positions, minor=True)
|
||||
ax.set_xticklabels(major_xticks_labels)
|
||||
|
|
222
test.py
222
test.py
|
@ -1,222 +0,0 @@
|
|||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.svm import LinearSVC, LinearSVR
|
||||
import quapy as qp
|
||||
import quapy.functional as F
|
||||
import sys
|
||||
import numpy as np
|
||||
|
||||
from NewMethods.methods import AveragePoolQuantification
|
||||
from classification.methods import PCALR
|
||||
from data import Dataset
|
||||
from method.meta import EPACC
|
||||
from quapy.model_selection import GridSearchQ
|
||||
from tqdm import tqdm
|
||||
import pandas as pd
|
||||
|
||||
sample_size=100
|
||||
qp.environ['SAMPLE_SIZE'] = sample_size
|
||||
|
||||
np.random.seed(0)
|
||||
|
||||
nfolds=5
|
||||
nrepeats=1
|
||||
|
||||
df = pd.DataFrame(columns=['dataset', 'method', 'mse'])
|
||||
for datasetname in qp.datasets.UCI_DATASETS:
|
||||
collection = qp.datasets.fetch_UCILabelledCollection(datasetname, verbose=False)
|
||||
scores = []
|
||||
pbar = tqdm(Dataset.kFCV(collection, nfolds=nfolds, nrepeats=nrepeats), total=nfolds*nrepeats)
|
||||
for data in pbar:
|
||||
pbar.set_description(f'{data.name}')
|
||||
# learner = GridSearchCV(LogisticRegression(class_weight='balanced'), param_grid={'C': np.logspace(-3,3,7)}, n_jobs=-1)
|
||||
learner = LogisticRegression(class_weight='balanced')
|
||||
# model = qp.method.aggregative.CC(learner)
|
||||
model = qp.method.meta.EHDy(learner, size=30, red_size=15, verbose=False)
|
||||
model.fit(data.training)
|
||||
err = qp.evaluation.artificial_sampling_eval(model, data.test, sample_size, n_prevpoints=101, n_jobs=-1,
|
||||
error_metric='mse', verbose=False)
|
||||
scores.append(err)
|
||||
|
||||
score = np.mean(scores)
|
||||
df = df.append({
|
||||
'dataset': datasetname,
|
||||
'method': model.__class__.__name__,
|
||||
'mse': score
|
||||
}, ignore_index=True)
|
||||
print(df)
|
||||
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
|
||||
#param_grid = {'C': np.logspace(-3,3,7), 'class_weight': ['balanced', None]}
|
||||
param_grid = {'C': np.logspace(0,3,4), 'class_weight': ['balanced']}
|
||||
max_evaluations = 500
|
||||
|
||||
sample_size = qp.environ['SAMPLE_SIZE']
|
||||
binary = False
|
||||
svmperf_home = './svm_perf_quantification'
|
||||
|
||||
if binary:
|
||||
#dataset = qp.datasets.fetch_reviews('kindle', tfidf=True, min_df=5)
|
||||
dataset = qp.datasets.fetch_UCIDataset('german', verbose=True)
|
||||
#qp.data.preprocessing.index(dataset, inplace=True)
|
||||
|
||||
else:
|
||||
dataset = qp.datasets.fetch_twitter('gasp', for_model_selection=True, min_df=5, pickle=True)
|
||||
#dataset.training = dataset.training.sampling(sample_size, 0.2, 0.5, 0.3)
|
||||
|
||||
print(f'dataset loaded: #training={len(dataset.training)} #test={len(dataset.test)}')
|
||||
|
||||
|
||||
# training a quantifier
|
||||
# learner = LogisticRegression(max_iter=1000)
|
||||
#model = qp.method.aggregative.ClassifyAndCount(learner)
|
||||
# model = qp.method.aggregative.AdjustedClassifyAndCount(learner)
|
||||
# model = qp.method.aggregative.ProbabilisticClassifyAndCount(learner)
|
||||
# model = qp.method.aggregative.ProbabilisticAdjustedClassifyAndCount(learner)
|
||||
# model = qp.method.aggregative.HellingerDistanceY(learner)
|
||||
# model = qp.method.aggregative.ExpectationMaximizationQuantifier(learner)
|
||||
# model = qp.method.aggregative.ExplicitLossMinimisationBinary(svmperf_home, loss='q', C=100)
|
||||
# model = qp.method.aggregative.SVMQ(svmperf_home, C=1)
|
||||
|
||||
#learner = PCALR()
|
||||
#learner = NeuralClassifierTrainer(CNNnet(dataset.vocabulary_size, dataset.n_classes))
|
||||
#print(learner.get_params())
|
||||
#model = qp.method.meta.QuaNet(learner, sample_size, device='cpu')
|
||||
|
||||
#learner = GridSearchCV(LogisticRegression(max_iter=1000), param_grid=param_grid, n_jobs=-1, verbose=1)
|
||||
#learner = LogisticRegression(max_iter=1000)
|
||||
# model = qp.method.aggregative.ClassifyAndCount(learner)
|
||||
|
||||
param_mod_sel = {
|
||||
'sample_size': 100,
|
||||
'n_prevpoints': 21,
|
||||
'n_repetitions': 5,
|
||||
'verbose': False
|
||||
}
|
||||
common = {
|
||||
'max_sample_size': 50,
|
||||
'n_jobs': -1,
|
||||
'param_grid': {'C': np.logspace(0,2,2), 'class_weight': ['balanced']},
|
||||
'param_mod_sel': param_mod_sel,
|
||||
'val_split': 0.4,
|
||||
'min_pos': 10,
|
||||
'size':6,
|
||||
'red_size':3
|
||||
}
|
||||
|
||||
# hyperparameters will be evaluated within each quantifier of the ensemble, and so the typical model selection
|
||||
# will be skipped (by setting hyperparameters to None)
|
||||
model = EPACC(LogisticRegression(max_iter=100), optim='mrae', policy='mrae', **common)
|
||||
|
||||
"""
|
||||
Problemas:
|
||||
- La interfaz es muy fea, hay que conocer practicamente todos los detalles así que no ahorra nada con respecto a crear
|
||||
un objeto con otros anidados dentro
|
||||
- El fit genera las prevalences random, y esto hace que despues de la model selection, un nuevo fit tire todo el trabajo
|
||||
hecho.
|
||||
- El fit de un GridSearcQ tiene dentro un best_estimator, pero después de la model selection, hacer fit otra vez sobre
|
||||
este objeto no se limita a re-entrenar el modelo con los mejores parámetros, sino que inicia una nueva búsqueda
|
||||
en modo grid search.
|
||||
- Posible solución (no vale): sería hacer directamente model selection con el benchmark final, aunque esto haría que los hyper-
|
||||
parámetros se buscasen en un conjunto diferente del resto de models....
|
||||
- Posible solución:
|
||||
- Elegir las prevalences en init
|
||||
-
|
||||
- Problema: el parámetro val_split es muy ambiguo en todo el framework. Por ejemplo, en EPACC podría ser un float que,
|
||||
en el caso de un GridSearchQ podría referir al split de validación para los hyperparámetros o al split que usa PACC
|
||||
para encontrar los parámetros...
|
||||
"""
|
||||
|
||||
# regressor = LinearSVR(max_iter=10000)
|
||||
# param_grid = {'C': np.logspace(-1,3,5)}
|
||||
# model = AveragePoolQuantification(regressor, sample_size, trials=5000, n_components=500, zscore=False)
|
||||
|
||||
# model = qp.method.meta.EHDy(learner, param_grid=param_grid, optim='mae',
|
||||
# sample_size=sample_size, eval_budget=max_evaluations//10, n_jobs=-1)
|
||||
#model = qp.method.aggregative.ClassifyAndCount(learner)
|
||||
|
||||
# model = qp.method.meta.QuaNet(PCALR(n_components=100, max_iter=1000),
|
||||
# sample_size=100,
|
||||
# patience=10,
|
||||
# tr_iter_per_poch=500, va_iter_per_poch=100, #lstm_nlayers=2, lstm_hidden_size=64,
|
||||
# ff_layers=[500, 250, 50],
|
||||
# checkpointdir='./checkpoint', device='cuda')
|
||||
|
||||
if qp.isbinary(model) and not qp.isbinary(dataset):
|
||||
model = qp.method.aggregative.OneVsAll(model)
|
||||
|
||||
|
||||
# Model fit and Evaluation on the test data
|
||||
# ----------------------------------------------------------------------------
|
||||
|
||||
print(f'fitting model {model.__class__.__name__}')
|
||||
#train, val = dataset.training.split_stratified(0.6)
|
||||
#model.fit(train, val_split=val)
|
||||
qp.SAMPLE=1
|
||||
qp.environ['SAMPLE_SIZE']=2
|
||||
model.fit(dataset.training)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# estimating class prevalences
|
||||
# print('quantifying')
|
||||
# prevalences_estim = model.quantify(dataset.test.instances)
|
||||
# prevalences_true = dataset.test.prevalence()
|
||||
#
|
||||
# evaluation (one single prediction)
|
||||
# error = qp.error.mae(prevalences_true, prevalences_estim)
|
||||
#
|
||||
# print(f'Evaluation in test (1 eval)')
|
||||
# print(f'true prevalence {F.strprev(prevalences_true)}')
|
||||
# print(f'estim prevalence {F.strprev(prevalences_estim)}')
|
||||
# print(f'mae={error:.3f}')
|
||||
|
||||
|
||||
# Model fit and Evaluation according to the artificial sampling protocol
|
||||
# ----------------------------------------------------------------------------
|
||||
|
||||
n_prevpoints = F.get_nprevpoints_approximation(combinations_budget=max_evaluations, n_classes=dataset.n_classes)
|
||||
n_evaluations = F.num_prevalence_combinations(n_prevpoints, dataset.n_classes)
|
||||
print(f'the prevalence interval [0,1] will be split in {n_prevpoints} prevalence points for each class, so that\n'
|
||||
f'the requested maximum number of sample evaluations ({max_evaluations}) is not exceeded.\n'
|
||||
f'For the {dataset.n_classes} classes this dataset has, this will yield a total of {n_evaluations} evaluations.')
|
||||
|
||||
true_prev, estim_prev = qp.evaluation.artificial_sampling_prediction(model, dataset.test, sample_size, n_prevpoints)
|
||||
|
||||
#qp.error.SAMPLE_SIZE = sample_size
|
||||
print(f'Evaluation according to the artificial sampling protocol ({len(true_prev)} evals)')
|
||||
for error in qp.error.QUANTIFICATION_ERROR:
|
||||
score = error(true_prev, estim_prev)
|
||||
print(f'{error.__name__}={score:.5f}')
|
||||
|
||||
sys.exit(0)
|
||||
# Model selection and Evaluation according to the artificial sampling protocol
|
||||
# ----------------------------------------------------------------------------
|
||||
|
||||
model_selection = GridSearchQ(model,
|
||||
param_grid=param_grid,
|
||||
sample_size=sample_size,
|
||||
eval_budget=max_evaluations//10,
|
||||
error='mae',
|
||||
refit=True,
|
||||
verbose=True,
|
||||
timeout=60*60)
|
||||
|
||||
model = model_selection.fit(dataset.training, val_split=0.3)
|
||||
#model = model_selection.fit(train, validation=val)
|
||||
print(f'Model selection: best_params = {model_selection.best_params_}')
|
||||
print(f'param scores:')
|
||||
for params, score in model_selection.param_scores_.items():
|
||||
print(f'\t{params}: {score:.5f}')
|
||||
|
||||
true_prev, estim_prev = qp.evaluation.artificial_sampling_prediction(model, dataset.test, sample_size, n_prevpoints)
|
||||
|
||||
print(f'After model selection: Evaluation according to the artificial sampling protocol ({len(true_prev)} evals)')
|
||||
for error in qp.error.QUANTIFICATION_ERROR:
|
||||
score = error(true_prev, estim_prev)
|
||||
print(f'{error.__name__}={score:.5f}')
|
Loading…
Reference in New Issue