1
0
Fork 0

fine grained sld updates...

This commit is contained in:
Alejandro Moreo Fernandez 2021-04-28 10:04:21 +02:00
commit 252e143ef6
10 changed files with 54 additions and 459 deletions

View File

@ -25,13 +25,13 @@ method_names, true_prevs, estim_prevs, tr_prevs = [], [], [], []
for model, model_name in [
(CC(cls), 'CC'),
# (FakeFGLSD(cls, nbins=20, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-20'),
(FakeFGLSD(cls, nbins=11, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-11'),
#(FakeFGLSD(cls, nbins=11, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-11'),
#(FakeFGLSD(cls, nbins=8, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-8'),
#(FakeFGLSD(cls, nbins=6, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-6'),
(FakeFGLSD(cls, nbins=5, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-5'),
#(FakeFGLSD(cls, nbins=4, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-4'),
(FakeFGLSD(cls, nbins=3, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-3'),
# (FakeFGLSD(cls, nbins=1, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-1'),
#(FakeFGLSD(cls, nbins=3, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-3'),
(FakeFGLSD(cls, nbins=1, isomerous=False, recompute_bins=True), 'FGSLD-isometric-dyn-1'),
# (FakeFGLSD(cls, nbins=3, isomerous=False, recompute_bins=False), 'FGSLD-isometric-sta-3'),
(EMQ(cls), 'SLD'),
]:

Binary file not shown.

Before

Width:  |  Height:  |  Size: 238 KiB

After

Width:  |  Height:  |  Size: 179 KiB

View File

@ -1,174 +0,0 @@
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import quapy as qp
from typing import Union
from quapy.data import LabelledCollection
from quapy.method.base import BaseQuantifier, BinaryQuantifier
from quapy.method.aggregative import PACC, EMQ, HDy
import quapy.functional as F
from tqdm import tqdm
from scipy.sparse import issparse, csr_matrix
import scipy
class PACCSLD(PACC):
"""
This method combines the EMQ improved posterior probabilities with PACC.
Note: the posterior probabilities are re-calibrated with EMQ only during prediction, and not also during fit since,
for PACC, the validation split is known to have the same prevalence as the training set (this is because the split
is stratified) and thus the posterior probabilities should not be re-calibrated for a different prior (it actually
happens to degrades performance).
"""
def fit(self, data: qp.data.LabelledCollection, fit_learner=True, val_split:Union[float, int, qp.data.LabelledCollection]=0.4):
self.train_prevalence = F.prevalence_from_labels(data.labels, data.n_classes)
return super(PACCSLD, self).fit(data, fit_learner, val_split)
def aggregate(self, classif_posteriors):
priors, posteriors = EMQ.EM(self.train_prevalence, classif_posteriors, epsilon=1e-4)
return super(PACCSLD, self).aggregate(posteriors)
class HDySLD(HDy):
"""
This method combines the EMQ improved posterior probabilities with HDy.
Note: [same as PACCSLD]
"""
def fit(self, data: qp.data.LabelledCollection, fit_learner=True,
val_split: Union[float, int, qp.data.LabelledCollection] = 0.4):
self.train_prevalence = F.prevalence_from_labels(data.labels, data.n_classes)
return super(HDySLD, self).fit(data, fit_learner, val_split)
def aggregate(self, classif_posteriors):
priors, posteriors = EMQ.EM(self.train_prevalence, classif_posteriors, epsilon=1e-4)
return super(HDySLD, self).aggregate(posteriors)
class AveragePoolQuantification(BinaryQuantifier):
def __init__(self, learner, sample_size, trials, n_components=-1, zscore=False):
self.learner = learner
self.sample_size = sample_size
self.trials = trials
self.do_zscore = zscore
self.zscore = StandardScaler() if self.do_zscore else None
self.do_pca = n_components>0
self.pca = PCA(n_components) if self.do_pca else None
def fit(self, data: LabelledCollection):
training, validation = data.split_stratified(train_prop=0.7)
X, y = [], []
nprevpoints = F.get_nprevpoints_approximation(self.trials, data.n_classes)
for sample in tqdm(
training.artificial_sampling_generator(self.sample_size, n_prevalences=nprevpoints, repeats=1),
desc='generating averages'
):
X.append(sample.instances.mean(axis=0))
y.append(sample.prevalence()[1])
while len(X) < self.trials:
sample = training.sampling(self.sample_size, F.uniform_simplex_sampling(data.n_classes))
X.append(sample.instances.mean(axis=0))
y.append(sample.prevalence())
X = np.asarray(np.vstack(X))
y = np.asarray(y)
if self.do_pca:
X = self.pca.fit_transform(X)
print(X.shape)
if self.do_zscore:
X = self.zscore.fit_transform(X)
print('training regressor...')
self.regressor = self.learner.fit(X, y)
# correction at 0:
print('getting corrections...')
X0 = np.asarray(np.vstack([validation.sampling(self.sample_size, 0., shuffle=False).instances.mean(axis=0) for _ in range(100)]))
X1 = np.asarray(np.vstack([validation.sampling(self.sample_size, 1., shuffle=False).instances.mean(axis=0) for _ in range(100)]))
if self.do_pca:
X0 = self.pca.transform(X0)
X1 = self.pca.transform(X1)
if self.do_zscore:
X0 = self.zscore.transform(X0)
X1 = self.zscore.transform(X1)
self.correction_0 = self.regressor.predict(X0).mean()
self.correction_1 = self.regressor.predict(X1).mean()
print('correction-0', self.correction_0)
print('correction-1', self.correction_1)
print('done')
def quantify(self, instances):
ave = np.asarray(instances.mean(axis=0))
if self.do_pca:
ave = self.pca.transform(ave)
if self.do_zscore:
ave = self.zscore.transform(ave)
phat = self.regressor.predict(ave).item()
phat = np.clip((phat-self.correction_0)/(self.correction_1-self.correction_0), 0, 1)
return np.asarray([1-phat, phat])
def set_params(self, **parameters):
self.learner.set_params(**parameters)
def get_params(self, deep=True):
return self.learner.get_params(deep=deep)
class WinnowOrthogonal(BaseEstimator):
def __init__(self):
pass
def fit(self, X, y):
self.classes_ = np.asarray(sorted(np.unique(y)))
w1 = np.asarray(X[y == 0].mean(axis=0)).flatten()
w2 = np.asarray(X[y == 1].mean(axis=0)).flatten()
diff = w2 - w1
orth = np.ones_like(diff)
orth[0] = -diff[1:].sum() / diff[0]
orth /= np.linalg.norm(orth)
self.w = orth
self.b = w1.dot(orth)
return self
def decision_function(self, X):
if issparse(X):
Z = X.dot(csr_matrix(self.w).T).toarray().flatten()
return Z - self.b
else:
return np.matmul(X, self.w) - self.b
def predict(self, X):
return 1 * (self.decision_function(X) > 0)
def split(self, X, y):
s = self.predict(X)
X0a = X[np.logical_and(y == 0, s == 0)]
X0b = X[np.logical_and(y == 0, s == 1)]
X1a = X[np.logical_and(y == 1, s == 0)]
X1b = X[np.logical_and(y == 1, s == 1)]
y0a = np.zeros(X0a.shape[0], dtype=np.int)
y0b = np.zeros(X0b.shape[0], dtype=np.int)
y1a = np.ones(X1a.shape[0], dtype=np.int)
y1b = np.ones(X1b.shape[0], dtype=np.int)
return X0a, X0b, X1a, X1b, y0a, y0b, y1a, y1b
def get_params(self):
return {}
def set_params(self, **params):
pass

View File

@ -1,16 +1,55 @@
Packaging:
==========================================
Documentation with sphinx
Document methods with paper references
allow for "pip install"
unit-tests
New features:
==========================================
Add NAE, NRAE
Add "measures for evaluating ordinal"?
Document methods with paper references
Add datasets for topic.
Do we want to cover cross-lingual quantification natively in QuaPy, or does it make more sense as an application on top?
Current issues:
==========================================
In binary quantification (hp, kindle, imdb) we used F1 in the minority class (which in kindle and hp happens to be the
negative class). This is not covered in this new implementation, in which the binary case is not treated as such, but as
an instance of single-label with 2 labels. Check
Add classnames to LabelledCollection ?
Add classnames to LabelledCollection? This should improve visualization of reports
Add automatic reindex of class labels in LabelledCollection (currently, class indexes should be ordered and with no gaps)
Add datasets for topic.
OVR I believe is currently tied to aggregative methods. We should provide a general interface also for general quantifiers
Currently, being "binary" only adds one checker; we should figure out how to impose the check to be automatically performed
Improvements:
==========================================
Clarify whether QuaNet is an aggregative method or not.
Explore the hyperparameter "number of bins" in HDy
Rename EMQ to SLD ?
Parallelize the kFCV in ACC and PACC?
Parallelize model selection trainings
We might want to think of (improving and) adding the class Tabular (it is defined and used on branch tweetsent). A more
recent version is in the project ql4facct. This class is meant to generate latex tables from results (highligting
best results, computing statistical tests, colouring cells, producing rankings, producing averages, etc.). Trying
to generate tables is typically a bad idea, but in this specific case we do have pretty good control of what an
experiment looks like. (Do we want to abstract experimental results? this could be useful not only for tables but
also for plots).
Checks:
==========================================
How many times is the system of equations for ACC and PACC not solved? How many times is it clipped? Do they sum up
to one always?
Parallelize the kFCV in ACC and PACC
Re-check how hyperparameters from the quantifier and hyperparameters from the classifier (in aggregative quantifiers)
is handled. In scikit-learn the hyperparameters from a wrapper method are indicated directly whereas the hyperparams
from the internal learner are prefixed with "estimator__". In QuaPy, combinations having to do with the classifier
can be computed at the begining, and then in an internal loop the hyperparams of the quantifier can be explored,
passing fit_learner=False.
Re-check Ensembles. As for now, they are strongly tied to aggregative quantifiers.
Re-think the environment variables. Maybe add new ones (like, for example, parameters for the plots)
Do we want to wrap prevalences (currently simple np.ndarray) as a class? This might be convenient for some interfaces
(e.g., for specifying artificial prevalences in samplings, for printing them -- currently supported through
F.strprev(), etc.). This might however add some overload, and prevent/difficult post processing with numpy.
Would be nice to get a better integration with sklearn.

View File

@ -1,48 +0,0 @@
from sklearn.model_selection import GridSearchCV
import numpy as np
import quapy as qp
from sklearn.linear_model import LogisticRegression
sample_size = 500
qp.environ['SAMPLE_SIZE'] = sample_size
def gen_data():
data = qp.datasets.fetch_reviews('kindle', tfidf=True, min_df=5)
models = [
qp.method.aggregative.CC,
qp.method.aggregative.ACC,
qp.method.aggregative.PCC,
qp.method.aggregative.PACC,
qp.method.aggregative.HDy,
qp.method.aggregative.EMQ,
qp.method.meta.ECC,
qp.method.meta.EACC,
qp.method.meta.EHDy,
]
method_names, true_prevs, estim_prevs, tr_prevs = [], [], [], []
for Quantifier in models:
print(f'training {Quantifier.__name__}')
lr = LogisticRegression(max_iter=1000, class_weight='balanced')
# lr = GridSearchCV(lr, param_grid={'C':np.logspace(-3,3,7)}, n_jobs=-1)
model = Quantifier(lr).fit(data.training)
true_prev, estim_prev = qp.evaluation.artificial_sampling_prediction(
model, data.test, sample_size, n_repetitions=20, n_prevpoints=11)
method_names.append(Quantifier.__name__)
true_prevs.append(true_prev)
estim_prevs.append(estim_prev)
tr_prevs.append(data.training.prevalence())
return method_names, true_prevs, estim_prevs, tr_prevs
method_names, true_prevs, estim_prevs, tr_prevs = qp.util.pickled_resource('./plots/plot_data.pkl', gen_data)
qp.plot.error_by_drift(method_names, true_prevs, estim_prevs, tr_prevs, n_bins=11, savepath='./plots/err_drift.png')
qp.plot.binary_diagonal(method_names, true_prevs, estim_prevs, savepath='./plots/bin_diag.png')
qp.plot.binary_bias_global(method_names, true_prevs, estim_prevs, savepath='./plots/bin_bias.png')
qp.plot.binary_bias_bins(method_names, true_prevs, estim_prevs, nbins=11, savepath='./plots/bin_bias_bin.png')

View File

@ -10,7 +10,7 @@ from sklearn.model_selection import StratifiedKFold
import pandas as pd
from data.base import Dataset, LabelledCollection
from quapy.data.base import Dataset, LabelledCollection
from quapy.data.preprocessing import text2tfidf, reduce_columns
from quapy.data.reader import *
from quapy.util import download_file_if_not_exists, download_file, get_quapy_home, pickled_resource

View File

@ -5,7 +5,7 @@ from typing import Union, Callable
import quapy as qp
import quapy.functional as F
from data.base import LabelledCollection
from quapy.data.base import LabelledCollection
from quapy.evaluation import artificial_sampling_prediction
from quapy.method.aggregative import BaseQuantifier

View File

@ -83,21 +83,21 @@ def binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=1, title=N
binwidth = 1/nbins
data = {}
for method, true_prev, estim_prev in zip(method_names, true_prevs, estim_prevs):
true_prev = true_prev[:,pos_class]
estim_prev = estim_prev[:,pos_class]
true_prev = true_prev[:, pos_class]
estim_prev = estim_prev[:, pos_class]
data[method] = []
inds = np.digitize(true_prev, bins, right=True)
inds = np.digitize(true_prev, bins[1:], right=True)
for ind in range(len(bins)):
selected = inds==ind
data[method].append(estim_prev[selected] - true_prev[selected])
nmethods = len(method_names)
boxwidth = binwidth/(nmethods+4)
for i,bin in enumerate(bins[:-1]):
for i,bin in enumerate(bins):
boxdata = [data[method][i] for method in method_names]
positions = [bin+(i*boxwidth)+2*boxwidth for i,_ in enumerate(method_names)]
box = boxplot(boxdata, showmeans=False, positions=positions, widths = boxwidth, sym='+', patch_artist=True)
box = boxplot(boxdata, showmeans=False, positions=positions, widths=boxwidth, sym='+', patch_artist=True)
for boxid in range(len(method_names)):
c = colormap.colors[boxid%len(colormap.colors)]
setp(box['fliers'][boxid], color=c, marker='+', markersize=3., markeredgecolor=c)
@ -110,7 +110,7 @@ def binary_bias_bins(method_names, true_prevs, estim_prevs, pos_class=1, title=N
major_xticks_positions.append(b)
minor_xticks_positions.append(b + binwidth / 2)
major_xticks_labels.append('')
minor_xticks_labels.append(f'[{bins[i]:.2f}-{bins[i + 1]:.2f})')
minor_xticks_labels.append(f'[{bins[i]:.2f}-{bins[i + 1]:.2f}' + (')' if i < len(bins)-2 else ']'))
ax.set_xticks(major_xticks_positions)
ax.set_xticks(minor_xticks_positions, minor=True)
ax.set_xticklabels(major_xticks_labels)

222
test.py
View File

@ -1,222 +0,0 @@
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.svm import LinearSVC, LinearSVR
import quapy as qp
import quapy.functional as F
import sys
import numpy as np
from NewMethods.methods import AveragePoolQuantification
from classification.methods import PCALR
from data import Dataset
from method.meta import EPACC
from quapy.model_selection import GridSearchQ
from tqdm import tqdm
import pandas as pd
sample_size=100
qp.environ['SAMPLE_SIZE'] = sample_size
np.random.seed(0)
nfolds=5
nrepeats=1
df = pd.DataFrame(columns=['dataset', 'method', 'mse'])
for datasetname in qp.datasets.UCI_DATASETS:
collection = qp.datasets.fetch_UCILabelledCollection(datasetname, verbose=False)
scores = []
pbar = tqdm(Dataset.kFCV(collection, nfolds=nfolds, nrepeats=nrepeats), total=nfolds*nrepeats)
for data in pbar:
pbar.set_description(f'{data.name}')
# learner = GridSearchCV(LogisticRegression(class_weight='balanced'), param_grid={'C': np.logspace(-3,3,7)}, n_jobs=-1)
learner = LogisticRegression(class_weight='balanced')
# model = qp.method.aggregative.CC(learner)
model = qp.method.meta.EHDy(learner, size=30, red_size=15, verbose=False)
model.fit(data.training)
err = qp.evaluation.artificial_sampling_eval(model, data.test, sample_size, n_prevpoints=101, n_jobs=-1,
error_metric='mse', verbose=False)
scores.append(err)
score = np.mean(scores)
df = df.append({
'dataset': datasetname,
'method': model.__class__.__name__,
'mse': score
}, ignore_index=True)
print(df)
sys.exit(0)
#param_grid = {'C': np.logspace(-3,3,7), 'class_weight': ['balanced', None]}
param_grid = {'C': np.logspace(0,3,4), 'class_weight': ['balanced']}
max_evaluations = 500
sample_size = qp.environ['SAMPLE_SIZE']
binary = False
svmperf_home = './svm_perf_quantification'
if binary:
#dataset = qp.datasets.fetch_reviews('kindle', tfidf=True, min_df=5)
dataset = qp.datasets.fetch_UCIDataset('german', verbose=True)
#qp.data.preprocessing.index(dataset, inplace=True)
else:
dataset = qp.datasets.fetch_twitter('gasp', for_model_selection=True, min_df=5, pickle=True)
#dataset.training = dataset.training.sampling(sample_size, 0.2, 0.5, 0.3)
print(f'dataset loaded: #training={len(dataset.training)} #test={len(dataset.test)}')
# training a quantifier
# learner = LogisticRegression(max_iter=1000)
#model = qp.method.aggregative.ClassifyAndCount(learner)
# model = qp.method.aggregative.AdjustedClassifyAndCount(learner)
# model = qp.method.aggregative.ProbabilisticClassifyAndCount(learner)
# model = qp.method.aggregative.ProbabilisticAdjustedClassifyAndCount(learner)
# model = qp.method.aggregative.HellingerDistanceY(learner)
# model = qp.method.aggregative.ExpectationMaximizationQuantifier(learner)
# model = qp.method.aggregative.ExplicitLossMinimisationBinary(svmperf_home, loss='q', C=100)
# model = qp.method.aggregative.SVMQ(svmperf_home, C=1)
#learner = PCALR()
#learner = NeuralClassifierTrainer(CNNnet(dataset.vocabulary_size, dataset.n_classes))
#print(learner.get_params())
#model = qp.method.meta.QuaNet(learner, sample_size, device='cpu')
#learner = GridSearchCV(LogisticRegression(max_iter=1000), param_grid=param_grid, n_jobs=-1, verbose=1)
#learner = LogisticRegression(max_iter=1000)
# model = qp.method.aggregative.ClassifyAndCount(learner)
param_mod_sel = {
'sample_size': 100,
'n_prevpoints': 21,
'n_repetitions': 5,
'verbose': False
}
common = {
'max_sample_size': 50,
'n_jobs': -1,
'param_grid': {'C': np.logspace(0,2,2), 'class_weight': ['balanced']},
'param_mod_sel': param_mod_sel,
'val_split': 0.4,
'min_pos': 10,
'size':6,
'red_size':3
}
# hyperparameters will be evaluated within each quantifier of the ensemble, and so the typical model selection
# will be skipped (by setting hyperparameters to None)
model = EPACC(LogisticRegression(max_iter=100), optim='mrae', policy='mrae', **common)
"""
Problemas:
- La interfaz es muy fea, hay que conocer practicamente todos los detalles así que no ahorra nada con respecto a crear
un objeto con otros anidados dentro
- El fit genera las prevalences random, y esto hace que despues de la model selection, un nuevo fit tire todo el trabajo
hecho.
- El fit de un GridSearcQ tiene dentro un best_estimator, pero después de la model selection, hacer fit otra vez sobre
este objeto no se limita a re-entrenar el modelo con los mejores parámetros, sino que inicia una nueva búsqueda
en modo grid search.
- Posible solución (no vale): sería hacer directamente model selection con el benchmark final, aunque esto haría que los hyper-
parámetros se buscasen en un conjunto diferente del resto de models....
- Posible solución:
- Elegir las prevalences en init
-
- Problema: el parámetro val_split es muy ambiguo en todo el framework. Por ejemplo, en EPACC podría ser un float que,
en el caso de un GridSearchQ podría referir al split de validación para los hyperparámetros o al split que usa PACC
para encontrar los parámetros...
"""
# regressor = LinearSVR(max_iter=10000)
# param_grid = {'C': np.logspace(-1,3,5)}
# model = AveragePoolQuantification(regressor, sample_size, trials=5000, n_components=500, zscore=False)
# model = qp.method.meta.EHDy(learner, param_grid=param_grid, optim='mae',
# sample_size=sample_size, eval_budget=max_evaluations//10, n_jobs=-1)
#model = qp.method.aggregative.ClassifyAndCount(learner)
# model = qp.method.meta.QuaNet(PCALR(n_components=100, max_iter=1000),
# sample_size=100,
# patience=10,
# tr_iter_per_poch=500, va_iter_per_poch=100, #lstm_nlayers=2, lstm_hidden_size=64,
# ff_layers=[500, 250, 50],
# checkpointdir='./checkpoint', device='cuda')
if qp.isbinary(model) and not qp.isbinary(dataset):
model = qp.method.aggregative.OneVsAll(model)
# Model fit and Evaluation on the test data
# ----------------------------------------------------------------------------
print(f'fitting model {model.__class__.__name__}')
#train, val = dataset.training.split_stratified(0.6)
#model.fit(train, val_split=val)
qp.SAMPLE=1
qp.environ['SAMPLE_SIZE']=2
model.fit(dataset.training)
# estimating class prevalences
# print('quantifying')
# prevalences_estim = model.quantify(dataset.test.instances)
# prevalences_true = dataset.test.prevalence()
#
# evaluation (one single prediction)
# error = qp.error.mae(prevalences_true, prevalences_estim)
#
# print(f'Evaluation in test (1 eval)')
# print(f'true prevalence {F.strprev(prevalences_true)}')
# print(f'estim prevalence {F.strprev(prevalences_estim)}')
# print(f'mae={error:.3f}')
# Model fit and Evaluation according to the artificial sampling protocol
# ----------------------------------------------------------------------------
n_prevpoints = F.get_nprevpoints_approximation(combinations_budget=max_evaluations, n_classes=dataset.n_classes)
n_evaluations = F.num_prevalence_combinations(n_prevpoints, dataset.n_classes)
print(f'the prevalence interval [0,1] will be split in {n_prevpoints} prevalence points for each class, so that\n'
f'the requested maximum number of sample evaluations ({max_evaluations}) is not exceeded.\n'
f'For the {dataset.n_classes} classes this dataset has, this will yield a total of {n_evaluations} evaluations.')
true_prev, estim_prev = qp.evaluation.artificial_sampling_prediction(model, dataset.test, sample_size, n_prevpoints)
#qp.error.SAMPLE_SIZE = sample_size
print(f'Evaluation according to the artificial sampling protocol ({len(true_prev)} evals)')
for error in qp.error.QUANTIFICATION_ERROR:
score = error(true_prev, estim_prev)
print(f'{error.__name__}={score:.5f}')
sys.exit(0)
# Model selection and Evaluation according to the artificial sampling protocol
# ----------------------------------------------------------------------------
model_selection = GridSearchQ(model,
param_grid=param_grid,
sample_size=sample_size,
eval_budget=max_evaluations//10,
error='mae',
refit=True,
verbose=True,
timeout=60*60)
model = model_selection.fit(dataset.training, val_split=0.3)
#model = model_selection.fit(train, validation=val)
print(f'Model selection: best_params = {model_selection.best_params_}')
print(f'param scores:')
for params, score in model_selection.param_scores_.items():
print(f'\t{params}: {score:.5f}')
true_prev, estim_prev = qp.evaluation.artificial_sampling_prediction(model, dataset.test, sample_size, n_prevpoints)
print(f'After model selection: Evaluation according to the artificial sampling protocol ({len(true_prev)} evals)')
for error in qp.error.QUANTIFICATION_ERROR:
score = error(true_prev, estim_prev)
print(f'{error.__name__}={score:.5f}')