1
0
Fork 0

testing the sensibility of KDEy to the bandwidth

This commit is contained in:
Alejandro Moreo Fernandez 2023-09-04 12:05:25 +02:00
parent b1715b685c
commit 2d6ac4af0d
3 changed files with 67 additions and 4 deletions

View File

@ -2,7 +2,7 @@ import sys
from pathlib import Path
import pandas as pd
result_dir = 'results_tweet_1000_mrae'
result_dir = 'results_tweet_mae_redohyper'
#result_dir = 'results_lequa_mrae'
dfs = []

View File

@ -0,0 +1,63 @@
import pickle
import numpy as np
from sklearn.linear_model import LogisticRegression
import os
import sys
import pandas as pd
import quapy as qp
from quapy.method.aggregative import EMQ, DistributionMatching, PACC, ACC, CC, PCC, HDy, OneVsAllAggregative
from method_kdey import KDEy
from method_dirichlety import DIRy
from quapy.model_selection import GridSearchQ
from quapy.protocol import UPP
SEED=1
if __name__ == '__main__':
qp.environ['SAMPLE_SIZE'] = 100
qp.environ['N_JOBS'] = -1
n_bags_val = 250
n_bags_test = 1000
result_dir = f'results_tweet_sensibility'
os.makedirs(result_dir, exist_ok=True)
method = 'KDEy-MLE'
global_result_path = f'{result_dir}/{method}'
if not os.path.exists(global_result_path+'.csv'):
with open(global_result_path+'.csv', 'wt') as csv:
csv.write(f'Method\tDataset\tBandwidth\tMAE\tMRAE\tKLD\n')
with open(global_result_path+'.csv', 'at') as csv:
# four semeval dataset share the training, so it is useless to optimize hyperparameters four times;
# this variable controls that the mod sel has already been done, and skip this otherwise
semeval_trained = False
for bandwidth in np.linspace(0.01, 0.2, 20):
for dataset in qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST:
print('init', dataset)
local_result_path = global_result_path + '_' + dataset + f'_{bandwidth:.3f}'
with qp.util.temp_seed(SEED):
data = qp.datasets.fetch_twitter(dataset, min_df=3, pickle=True, for_model_selection=False)
quantifier = KDEy(LogisticRegression(), target='max_likelihood', val_split=10, bandwidth=bandwidth)
quantifier.fit(data.training)
protocol = UPP(data.test, repeats=n_bags_test)
report = qp.evaluation.evaluation_report(quantifier, protocol, error_metrics=['mae', 'mrae', 'kld'], verbose=True)
report.to_csv(f'{local_result_path}.dataframe')
means = report.mean()
csv.write(f'{method}\t{data.name}\t{bandwidth}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\n')
csv.flush()
df = pd.read_csv(global_result_path+'.csv', sep='\t')
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE", "MRAE"])
print(pv)

View File

@ -20,13 +20,13 @@ if __name__ == '__main__':
qp.environ['N_JOBS'] = -1
n_bags_val = 250
n_bags_test = 1000
optim = 'mrae'
result_dir = f'results_tweet_{optim}'
optim = 'mae'
result_dir = f'results_tweet_{optim}_redohyper'
os.makedirs(result_dir, exist_ok=True)
hyper_LR = {
'classifier__C': np.logspace(-4,4,9),
'classifier__C': np.logspace(-3,3,7),
'classifier__class_weight': ['balanced', None]
}