diff --git a/examples/ifcb_experiments.py b/examples/ifcb_experiments.py index 807fdf5..bf73f10 100644 --- a/examples/ifcb_experiments.py +++ b/examples/ifcb_experiments.py @@ -6,7 +6,6 @@ from quapy.evaluation import evaluation_report def newLR(): return LogisticRegression(n_jobs=-1) -<<<<<<< HEAD quantifiers = [ ('CC', qp.method.aggregative.CC(newLR())), @@ -19,17 +18,7 @@ quantifiers = [ for quant_name, quantifier in quantifiers: -======= -quantifiers = {'CC':qp.method.aggregative.CC(newLR()), - 'ACC':qp.method.aggregative.ACC(newLR()), - 'PCC':qp.method.aggregative.PCC(newLR()), - 'PACC':qp.method.aggregative.PACC(newLR()), - 'HDy':qp.method.aggregative.DistributionMatching(newLR()), - 'EMQ':qp.method.aggregative.EMQ(newLR()) - } -for quant_name, quantifier in quantifiers.items(): ->>>>>>> 5566e0c97ae1b49b30874b6610d7f5b062009271 print("Experiment with "+quant_name) train, test_gen = qp.datasets.fetch_IFCB() diff --git a/quapy/data/_ifcb.py b/quapy/data/_ifcb.py index 412d773..79e7eb3 100644 --- a/quapy/data/_ifcb.py +++ b/quapy/data/_ifcb.py @@ -1,18 +1,5 @@ import os import pandas as pd -<<<<<<< HEAD -from quapy.protocol import AbstractProtocol - -class IFCBTrainSamplesFromDir(AbstractProtocol): - - def __init__(self, path_dir:str, classes: list): - self.path_dir = path_dir - self.classes = classes - self.samples = [] - for filename in os.listdir(path_dir): - if filename.endswith('.csv'): - self.samples.append(filename) -======= import math from quapy.protocol import AbstractProtocol from pathlib import Path @@ -60,7 +47,6 @@ class IFCBTrainSamplesFromDir(AbstractProtocol): self.samples = samples else: self.samples = get_sample_list(path_dir) ->>>>>>> 5566e0c97ae1b49b30874b6610d7f5b062009271 def __call__(self): for sample in self.samples: @@ -78,20 +64,6 @@ class IFCBTrainSamplesFromDir(AbstractProtocol): """ return len(self.samples) -<<<<<<< HEAD - -class IFCBTestSamples(AbstractProtocol): - - def __init__(self, path_dir:str, test_prevalences_path: str): - self.path_dir = path_dir - self.test_prevalences = pd.read_csv(os.path.join(path_dir, test_prevalences_path)) - - def __call__(self): - for _, test_sample in self.test_prevalences.iterrows(): - #Load the sample from disk - X = pd.read_csv(os.path.join(self.path_dir,test_sample['sample']+'.csv')).to_numpy() - prevalences = test_sample.iloc[1:].to_numpy().astype(float) -======= class IFCBTestSamples(AbstractProtocol): def __init__(self, path_dir:str, test_prevalences: pd.DataFrame, samples: list = None, classes: list=None): @@ -115,19 +87,12 @@ class IFCBTestSamples(AbstractProtocol): y = s.iloc[:,0] # In this case we compute the sample prevalences from the labels prevalences = y[y.isin(self.classes)].value_counts().reindex(self.classes, fill_value=0).to_numpy()/len(s) ->>>>>>> 5566e0c97ae1b49b30874b6610d7f5b062009271 yield X, prevalences def total(self): """ Returns the total number of samples that the protocol generates. -<<<<<<< HEAD - :return: The number of test samples to generate. - """ - return len(self.test_prevalences.index) -======= :return: The number of training samples to generate. """ return len(self.samples) ->>>>>>> 5566e0c97ae1b49b30874b6610d7f5b062009271