forked from moreo/QuaPy
ongoing protocols
This commit is contained in:
parent
b453c8fcbc
commit
46e3632200
|
@ -1,244 +0,0 @@
|
|||
import itertools
|
||||
from collections.abc import Generator
|
||||
from contextlib import ExitStack
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
from quapy.data import LabelledCollection
|
||||
import quapy.functional as F
|
||||
|
||||
|
||||
# 0.1.7
|
||||
# change the LabelledCollection API (removing protocol-related samplings)
|
||||
# need to change the two references to the above in the wiki / doc, and code examples...
|
||||
# removed artificial_prevalence_sampling from functional
|
||||
|
||||
|
||||
# class AbstractProtocol(metaclass=ABCMeta):
|
||||
# def __call__(self):
|
||||
# for g in self.gen():
|
||||
# yield g
|
||||
#
|
||||
# @abstractmethod
|
||||
# def gen(self):
|
||||
# ...
|
||||
|
||||
|
||||
class AbstractStochasticProtocol(metaclass=ABCMeta):
|
||||
def __init__(self, seed=None):
|
||||
self.random_seed = seed
|
||||
|
||||
@property
|
||||
def random_seed(self):
|
||||
return self._random_seed
|
||||
|
||||
@random_seed.setter
|
||||
def random_seed(self, seed):
|
||||
self._random_seed = seed
|
||||
|
||||
@abstractmethod
|
||||
def samples_parameters(self):
|
||||
"""
|
||||
This function has to return all the necessary parameters to replicate the samples
|
||||
:return: a list of parameters, each of which serves to deterministically generate a sample
|
||||
"""
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def sample(self, params):
|
||||
"""
|
||||
Extract one sample determined by the given parameters
|
||||
|
||||
:param params: all the necessary parameters to generate a sample
|
||||
:return: one sample (the same sample has to be generated for the same parameters)
|
||||
"""
|
||||
...
|
||||
|
||||
def __call__(self):
|
||||
with ExitStack() as stack:
|
||||
if self.random_seed is not None:
|
||||
stack.enter_context(qp.util.temp_seed(self.random_seed))
|
||||
for params in self.samples_parameters():
|
||||
yield self.sample(params)
|
||||
|
||||
|
||||
class APP(AbstractStochasticProtocol):
|
||||
"""
|
||||
Implementation of the artificial prevalence protocol (APP).
|
||||
The APP consists of exploring a grid of prevalence values containing `n_prevalences` points (e.g.,
|
||||
[0, 0.05, 0.1, 0.15, ..., 1], if `n_prevalences=21`), and generating all valid combinations of
|
||||
prevalence values for all classes (e.g., for 3 classes, samples with [0, 0, 1], [0, 0.05, 0.95], ...,
|
||||
[1, 0, 0] prevalence values of size `sample_size` will be yielded). The number of samples for each valid
|
||||
combination of prevalence values is indicated by `repeats`.
|
||||
|
||||
:param sample_size: integer, number of instances in each sample
|
||||
:param n_prevalences: the number of equidistant prevalence points to extract from the [0,1] interval for the
|
||||
grid (default is 21)
|
||||
:param repeats: number of copies for each valid prevalence vector (default is 1)
|
||||
:param random_seed: allows replicating samples across runs (default None)
|
||||
"""
|
||||
|
||||
def __init__(self, data:LabelledCollection, sample_size, n_prevalences=21, repeats=1, random_seed=None):
|
||||
super(APP, self).__init__(random_seed)
|
||||
self.data = data
|
||||
self.sample_size = sample_size
|
||||
self.n_prevalences = n_prevalences
|
||||
self.repeats = repeats
|
||||
|
||||
def prevalence_grid(self, dimensions):
|
||||
"""
|
||||
Generates vectors of prevalence values from an exhaustive grid of prevalence values. The
|
||||
number of prevalence values explored for each dimension depends on `n_prevalences`, so that, if, for example,
|
||||
`n_prevalences=11` then the prevalence values of the grid are taken from [0, 0.1, 0.2, ..., 0.9, 1]. Only
|
||||
valid prevalence distributions are returned, i.e., vectors of prevalence values that sum up to 1. For each
|
||||
valid vector of prevalence values, `repeat` copies are returned. The vector of prevalence values can be
|
||||
implicit (by setting `return_constrained_dim=False`), meaning that the last dimension (which is constrained
|
||||
to 1 - sum of the rest) is not returned (note that, quite obviously, in this case the vector does not sum up to
|
||||
1). Note that this method is deterministic, i.e., there is no random sampling anywhere.
|
||||
|
||||
:param dimensions: the number of classes
|
||||
:return: a `np.ndarray` of shape `(n, dimensions)` if `return_constrained_dim=True` or of shape
|
||||
`(n, dimensions-1)` if `return_constrained_dim=False`, where `n` is the number of valid combinations found
|
||||
in the grid multiplied by `repeat`
|
||||
"""
|
||||
s = np.linspace(0., 1., self.n_prevalences, endpoint=True)
|
||||
s = [s] * (dimensions - 1)
|
||||
prevs = [p for p in itertools.product(*s, repeat=1) if sum(p) <= 1]
|
||||
prevs = np.asarray(prevs).reshape(len(prevs), -1)
|
||||
if self.repeats > 1:
|
||||
prevs = np.repeat(prevs, self.repeats, axis=0)
|
||||
return prevs
|
||||
|
||||
def samples_parameters(self):
|
||||
indexes = []
|
||||
for prevs in self.prevalence_grid(dimensions=self.data.n_classes):
|
||||
index = data.sampling_index(self.sample_size, *prevs)
|
||||
indexes.append(index)
|
||||
return indexes
|
||||
|
||||
def sample(self, index):
|
||||
return self.data.sampling_from_index(index)
|
||||
|
||||
|
||||
class NPP(AbstractStochasticProtocol):
|
||||
"""
|
||||
A generator of samples that implements the natural prevalence protocol (NPP). The NPP consists of drawing
|
||||
samples uniformly at random, therefore approximately preserving the natural prevalence of the collection.
|
||||
|
||||
:param sample_size: integer, the number of instances in each sample
|
||||
:param repeats: the number of samples to generate
|
||||
"""
|
||||
|
||||
def __init__(self, data:LabelledCollection, sample_size, repeats=1, random_seed=None):
|
||||
super(NPP, self).__init__(random_seed)
|
||||
self.data = data
|
||||
self.sample_size = sample_size
|
||||
self.repeats = repeats
|
||||
self.random_seed = random_seed
|
||||
|
||||
def samples_parameters(self):
|
||||
indexes = []
|
||||
for _ in range(self.repeats):
|
||||
index = data.uniform_sampling_index(self.sample_size)
|
||||
indexes.append(index)
|
||||
return indexes
|
||||
|
||||
def sample(self, index):
|
||||
return self.data.sampling_from_index(index)
|
||||
|
||||
|
||||
class USimplexPP(AbstractStochasticProtocol):
|
||||
|
||||
def __init__(self, data: LabelledCollection, sample_size, repeats=1, random_seed=None):
|
||||
super(USimplexPP, self).__init__(random_seed)
|
||||
self.data = data
|
||||
self.sample_size = sample_size
|
||||
self.repeats = repeats
|
||||
self.random_seed = random_seed
|
||||
|
||||
def samples_parameters(self):
|
||||
indexes = []
|
||||
for prevs in F.uniform_simplex_sampling(n_classes=data.n_classes, size=self.repeats):
|
||||
index = data.sampling_index(self.sample_size, *prevs)
|
||||
indexes.append(index)
|
||||
return indexes
|
||||
|
||||
def sample(self, index):
|
||||
return self.data.sampling_from_index(index)
|
||||
|
||||
|
||||
class CovariateShift(AbstractStochasticProtocol):
|
||||
"""
|
||||
Generates mixtures of two domains (A and B) at controlled rates, but preserving the original class prevalence.
|
||||
|
||||
:param domainA:
|
||||
:param domainB:
|
||||
:param sample_size:
|
||||
:param repeats:
|
||||
:param prevalence: the prevalence to preserv along the mixtures. If specified, should be an array containing
|
||||
one prevalence value (positive float) for each class and summing up to one. If not specified, the prevalence
|
||||
will be taken from the domain A (default).
|
||||
:param mixture_points: an integer indicating the number of points to take from a linear scale (e.g., 21 will
|
||||
generate the mixture points [1, 0.95, 0.9, ..., 0]), or the array of mixture values itself.
|
||||
the specific points
|
||||
:param random_seed:
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
domainA: LabelledCollection,
|
||||
domainB: LabelledCollection,
|
||||
sample_size,
|
||||
repeats=1,
|
||||
prevalence=None,
|
||||
mixture_points=11,
|
||||
random_seed=None):
|
||||
super(CovariateShift, self).__init__(random_seed)
|
||||
self.data = data
|
||||
self.sample_size = sample_size
|
||||
self.repeats = repeats
|
||||
if prevalence is None:
|
||||
self.prevalence = domainA.prevalence()
|
||||
else:
|
||||
self.prevalence = np.asarray(prevalence)
|
||||
assert len(self.prevalence) == domainA.n_classes, \
|
||||
f'wrong shape for the vector prevalence (expected {domainA.n_classes})'
|
||||
assert F.check_prevalence_vector(self.prevalence), \
|
||||
f'the prevalence vector is not valid (either it contains values outside [0,1] or does not sum up to 1)'
|
||||
assert isinstance(mixture_points, int) or
|
||||
self.random_seed = random_seed
|
||||
|
||||
def samples_parameters(self):
|
||||
indexes = []
|
||||
for _ in range(self.repeats):
|
||||
index = data.uniform_sampling_index(self.sample_size)
|
||||
indexes.append(index)
|
||||
return indexes
|
||||
|
||||
def sample(self, index):
|
||||
return self.data.sampling_from_index(index)
|
||||
|
||||
|
||||
if __name__=='__main__':
|
||||
import numpy as np
|
||||
import quapy as qp
|
||||
|
||||
y = [0]*25 + [1]*25 + [2]*25 + [3]*25
|
||||
X = [str(i)+'-'+str(yi) for i, yi in enumerate(y)]
|
||||
|
||||
data = LabelledCollection(X, y, classes_=sorted(np.unique(y)))
|
||||
|
||||
# p=CounterExample(1, 8, 10, 5)
|
||||
|
||||
# p = APP(data, sample_size=10, n_prevalences=11, random_seed=42)
|
||||
# p = NPP(data, sample_size=10, repeats=10, random_seed=42)
|
||||
# p = NPP(data, sample_size=10, repeats=10)
|
||||
p = USimplexPP(data, sample_size=10, repeats=10)
|
||||
|
||||
for _ in range(2):
|
||||
print('init generator', p.__class__.__name__)
|
||||
for i in p():
|
||||
# print(i)
|
||||
print(i.instances, i.labels, i.prevalence())
|
||||
|
||||
print('done')
|
||||
|
|
@ -1,3 +1,4 @@
|
|||
import numpy as np
|
||||
import itertools
|
||||
from collections.abc import Generator
|
||||
from contextlib import ExitStack
|
||||
|
@ -5,6 +6,7 @@ from abc import ABCMeta, abstractmethod
|
|||
|
||||
from quapy.data import LabelledCollection
|
||||
import quapy.functional as F
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
# 0.1.7
|
||||
|
@ -12,66 +14,92 @@ import quapy.functional as F
|
|||
# need to change the two references to the above in the wiki / doc, and code examples...
|
||||
# removed artificial_prevalence_sampling from functional
|
||||
|
||||
# maybe add some parameters in the init of the protocols (or maybe only for IndexableWhateverProtocols
|
||||
# indicating that the protocol should return indexes, and not samples themselves?
|
||||
# also: some parameters in the init could be used to indicate that the method should return a tuple with
|
||||
# unlabelled instances and the vector of prevalence values (and not a LabelledCollection).
|
||||
# Or: this can be done in a different function; i.e., we use one function (now __call__) to return
|
||||
# LabelledCollections, and another new one for returning the other output, which is more general for
|
||||
# evaluation purposes.
|
||||
|
||||
class NewAbstractProtocol(metaclass=Generator):
|
||||
@abstractmethod
|
||||
def send(self, value):
|
||||
"""Send a value into the generator.
|
||||
Return next yielded value or raise StopIteration.
|
||||
"""
|
||||
raise StopIteration
|
||||
|
||||
@abstractmethod
|
||||
def throw(self, typ, val=None, tb=None):
|
||||
"""Raise an exception in the generator.
|
||||
Return next yielded value or raise StopIteration.
|
||||
"""
|
||||
if val is None:
|
||||
if tb is None:
|
||||
raise typ
|
||||
val = typ()
|
||||
if tb is not None:
|
||||
val = val.with_traceback(tb)
|
||||
raise val
|
||||
|
||||
# the so-called "gen" function has to be implemented as a protocol. The problem here is that this function
|
||||
# should be able to return only unlabelled instances plus a vector of prevalences (and not LabelledCollections).
|
||||
# This was coded as different functions in 0.1.6
|
||||
|
||||
|
||||
class AbstractProtocol(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class for sampling protocols.
|
||||
A sampling protocol defines how to generate samples out of some dataset.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def __call__(self):
|
||||
"""
|
||||
A generator that yields one sample at each iteration
|
||||
Implements the protocol. Yields one sample at a time
|
||||
|
||||
:return: yield one sample (instance of :class:`quapy.data.LabelledCollection`) at each iteration
|
||||
:return: yields one sample at a time
|
||||
"""
|
||||
for index in self.indexes(data):
|
||||
yield data.sampling_from_index(index)
|
||||
...
|
||||
|
||||
def indexes(self, data: LabelledCollection):
|
||||
def total(self):
|
||||
"""
|
||||
A generator that yields one sample index at each iteration.
|
||||
(This function is mainly a generic decorator that sets, if requested, the local random seed; the real
|
||||
sampling is implemented by :meth:`_indexes`.)
|
||||
Indicates the total number of samples that the protocol generates.
|
||||
|
||||
:param data: the set of data from which samples' indexes are to be drawn
|
||||
:return: one sample index (instance of `np.ndarray`) at each iteration
|
||||
:return: The number of samples to generate if known, or `None` otherwise.
|
||||
"""
|
||||
return None
|
||||
|
||||
|
||||
class AbstractStochasticSeededProtocol(AbstractProtocol):
|
||||
"""
|
||||
An AbstractStochasticSeededProtocol is a protocol that generates, via any random procedure (e.g.,
|
||||
via random sapling), sequences of `LabelledCollection` samples. The protocol abstraction enforces
|
||||
the object to be instantiated using a seed, so that the sequence can be completely replicated.
|
||||
In order to make this functionality possible, the classes extending this abstraction need to
|
||||
implement only two functions, :meth:`samples_parameters` which generates all the parameters
|
||||
needed for extracting the samples, and :meth:`sample` that, given some parameters as input,
|
||||
deterministically generates a sample.
|
||||
|
||||
:param seed: the seed for allowing to replicate any sequence of samples. Default is None, meaning that
|
||||
the sequence will be different every time the protocol is called.
|
||||
"""
|
||||
|
||||
def __init__(self, seed=None):
|
||||
self.random_seed = seed
|
||||
|
||||
@property
|
||||
def random_seed(self):
|
||||
return self._random_seed
|
||||
|
||||
@random_seed.setter
|
||||
def random_seed(self, seed):
|
||||
self._random_seed = seed
|
||||
|
||||
@abstractmethod
|
||||
def samples_parameters(self):
|
||||
"""
|
||||
This function has to return all the necessary parameters to replicate the samples
|
||||
|
||||
:return: a list of parameters, each of which serves to deterministically generate a sample
|
||||
"""
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def sample(self, params):
|
||||
"""
|
||||
Extract one sample determined by the given parameters
|
||||
|
||||
:param params: all the necessary parameters to generate a sample
|
||||
:return: one sample (the same sample has to be generated for the same parameters)
|
||||
"""
|
||||
...
|
||||
|
||||
def __call__(self):
|
||||
with ExitStack() as stack:
|
||||
if self.random_seed is not None:
|
||||
stack.enter_context(qp.util.temp_seed(self.random_seed))
|
||||
for index in self._indexes(data):
|
||||
yield index
|
||||
|
||||
@abstractmethod
|
||||
def _indexes(self, data: LabelledCollection):
|
||||
...
|
||||
for params in self.samples_parameters():
|
||||
yield self.sample(params)
|
||||
|
||||
|
||||
class APP(AbstractProtocol):
|
||||
class APP(AbstractStochasticSeededProtocol):
|
||||
"""
|
||||
Implementation of the artificial prevalence protocol (APP).
|
||||
The APP consists of exploring a grid of prevalence values containing `n_prevalences` points (e.g.,
|
||||
|
@ -80,25 +108,22 @@ class APP(AbstractProtocol):
|
|||
[1, 0, 0] prevalence values of size `sample_size` will be yielded). The number of samples for each valid
|
||||
combination of prevalence values is indicated by `repeats`.
|
||||
|
||||
:param data: a `LabelledCollection` from which the samples will be drawn
|
||||
:param sample_size: integer, number of instances in each sample
|
||||
:param n_prevalences: the number of equidistant prevalence points to extract from the [0,1] interval for the
|
||||
grid (default is 21)
|
||||
:param repeats: number of copies for each valid prevalence vector (default is 1)
|
||||
:param repeats: number of copies for each valid prevalence vector (default is 10)
|
||||
:param random_seed: allows replicating samples across runs (default None)
|
||||
"""
|
||||
|
||||
def __init__(self, data:LabelledCollection, sample_size, n_prevalences=21, repeats=1, random_seed=None):
|
||||
def __init__(self, data:LabelledCollection, sample_size, n_prevalences=21, repeats=10, random_seed=None):
|
||||
super(APP, self).__init__(random_seed)
|
||||
self.data = data
|
||||
self.sample_size = sample_size
|
||||
self.n_prevalences = n_prevalences
|
||||
self.repeats = repeats
|
||||
self.random_seed = random_seed
|
||||
|
||||
def _indexes(self, data: LabelledCollection):
|
||||
for prevs in self.prevalence_grid(dimensions=data.n_classes):
|
||||
yield data.sampling_index(self.sample_size, *prevs)
|
||||
|
||||
def prevalence_grid(self, dimensions, return_constrained_dim=False):
|
||||
def prevalence_grid(self, dimensions):
|
||||
"""
|
||||
Generates vectors of prevalence values from an exhaustive grid of prevalence values. The
|
||||
number of prevalence values explored for each dimension depends on `n_prevalences`, so that, if, for example,
|
||||
|
@ -110,8 +135,6 @@ class APP(AbstractProtocol):
|
|||
1). Note that this method is deterministic, i.e., there is no random sampling anywhere.
|
||||
|
||||
:param dimensions: the number of classes
|
||||
:param return_constrained_dim: set to True to return all dimensions, or to False (default) for ommitting the
|
||||
constrained dimension
|
||||
:return: a `np.ndarray` of shape `(n, dimensions)` if `return_constrained_dim=True` or of shape
|
||||
`(n, dimensions-1)` if `return_constrained_dim=False`, where `n` is the number of valid combinations found
|
||||
in the grid multiplied by `repeat`
|
||||
|
@ -119,43 +142,163 @@ class APP(AbstractProtocol):
|
|||
s = np.linspace(0., 1., self.n_prevalences, endpoint=True)
|
||||
s = [s] * (dimensions - 1)
|
||||
prevs = [p for p in itertools.product(*s, repeat=1) if sum(p) <= 1]
|
||||
if return_constrained_dim:
|
||||
prevs = [p + (1 - sum(p),) for p in prevs]
|
||||
prevs = np.asarray(prevs).reshape(len(prevs), -1)
|
||||
if self.repeats > 1:
|
||||
prevs = np.repeat(prevs, self.repeats, axis=0)
|
||||
return prevs
|
||||
|
||||
def samples_parameters(self):
|
||||
indexes = []
|
||||
for prevs in self.prevalence_grid(dimensions=self.data.n_classes):
|
||||
index = data.sampling_index(self.sample_size, *prevs)
|
||||
indexes.append(index)
|
||||
return indexes
|
||||
|
||||
class NPP(AbstractProtocol):
|
||||
def sample(self, index):
|
||||
return self.data.sampling_from_index(index)
|
||||
|
||||
def total(self):
|
||||
return F.num_prevalence_combinations(self.n_prevalences, self.data.n_classes, self.repeats)
|
||||
|
||||
|
||||
class NPP(AbstractStochasticSeededProtocol):
|
||||
"""
|
||||
A generator of samples that implements the natural prevalence protocol (NPP). The NPP consists of drawing
|
||||
samples uniformly at random, therefore approximately preserving the natural prevalence of the collection.
|
||||
|
||||
:param data: a `LabelledCollection` from which the samples will be drawn
|
||||
:param sample_size: integer, the number of instances in each sample
|
||||
:param repeats: the number of samples to generate
|
||||
:param repeats: the number of samples to generate. Default is 100.
|
||||
:param random_seed: allows replicating samples across runs (default None)
|
||||
"""
|
||||
|
||||
def __init__(self, sample_size, repeats=1, random_seed=None):
|
||||
def __init__(self, data:LabelledCollection, sample_size, repeats=100, random_seed=None):
|
||||
super(NPP, self).__init__(random_seed)
|
||||
self.data = data
|
||||
self.sample_size = sample_size
|
||||
self.repeats = repeats
|
||||
self.random_seed = random_seed
|
||||
|
||||
def _indexes(self, data: LabelledCollection):
|
||||
def samples_parameters(self):
|
||||
indexes = []
|
||||
for _ in range(self.repeats):
|
||||
yield data.uniform_sampling_index(self.sample_size)
|
||||
index = data.uniform_sampling_index(self.sample_size)
|
||||
indexes.append(index)
|
||||
return indexes
|
||||
|
||||
def sample(self, index):
|
||||
return self.data.sampling_from_index(index)
|
||||
|
||||
def total(self):
|
||||
return self.repeats
|
||||
|
||||
|
||||
class USimplexPP(AbstractProtocol):
|
||||
|
||||
def __init__(self, sample_size, repeats=1, random_seed=None):
|
||||
class USimplexPP(AbstractStochasticSeededProtocol):
|
||||
"""
|
||||
A variant of :class:`APP` that, instead of using a grid of equidistant prevalence values,
|
||||
relies on the Kraemer algorithm for sampling unit (k-1)-simplex uniformly at random, with
|
||||
k the number of classes. This protocol covers the entire range of prevalence values in a
|
||||
statistical sense, i.e., unlike APP there is no guarantee that it is covered precisely
|
||||
equally for all classes, but it is preferred in cases in which the number of possible
|
||||
combinations of the grid values of APP makes this endeavour intractable.
|
||||
|
||||
:param data: a `LabelledCollection` from which the samples will be drawn
|
||||
:param sample_size: integer, the number of instances in each sample
|
||||
:param repeats: the number of samples to generate. Default is 100.
|
||||
:param random_seed: allows replicating samples across runs (default None)
|
||||
"""
|
||||
|
||||
def __init__(self, data: LabelledCollection, sample_size, repeats=100, random_seed=None):
|
||||
super(USimplexPP, self).__init__(random_seed)
|
||||
self.data = data
|
||||
self.sample_size = sample_size
|
||||
self.repeats = repeats
|
||||
self.random_seed = random_seed
|
||||
|
||||
def _indexes(self, data: LabelledCollection):
|
||||
def samples_parameters(self):
|
||||
indexes = []
|
||||
for prevs in F.uniform_simplex_sampling(n_classes=data.n_classes, size=self.repeats):
|
||||
yield data.sampling_index(self.sample_size, *prevs)
|
||||
index = data.sampling_index(self.sample_size, *prevs)
|
||||
indexes.append(index)
|
||||
return indexes
|
||||
|
||||
def sample(self, index):
|
||||
return self.data.sampling_from_index(index)
|
||||
|
||||
def total(self):
|
||||
return self.repeats
|
||||
|
||||
|
||||
|
||||
class CovariateShiftPP(AbstractStochasticSeededProtocol):
|
||||
"""
|
||||
Generates mixtures of two domains (A and B) at controlled rates, but preserving the original class prevalence.
|
||||
|
||||
:param domainA:
|
||||
:param domainB:
|
||||
:param sample_size:
|
||||
:param repeats:
|
||||
:param prevalence: the prevalence to preserv along the mixtures. If specified, should be an array containing
|
||||
one prevalence value (positive float) for each class and summing up to one. If not specified, the prevalence
|
||||
will be taken from the domain A (default).
|
||||
:param mixture_points: an integer indicating the number of points to take from a linear scale (e.g., 21 will
|
||||
generate the mixture points [1, 0.95, 0.9, ..., 0]), or the array of mixture values itself.
|
||||
the specific points
|
||||
:param random_seed:
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
domainA: LabelledCollection,
|
||||
domainB: LabelledCollection,
|
||||
sample_size,
|
||||
repeats=1,
|
||||
prevalence=None,
|
||||
mixture_points=11,
|
||||
random_seed=None):
|
||||
super(CovariateShiftPP, self).__init__(random_seed)
|
||||
self.A = domainA
|
||||
self.B = domainB
|
||||
self.sample_size = sample_size
|
||||
self.repeats = repeats
|
||||
if prevalence is None:
|
||||
self.prevalence = domainA.prevalence()
|
||||
else:
|
||||
self.prevalence = np.asarray(prevalence)
|
||||
assert len(self.prevalence) == domainA.n_classes, \
|
||||
f'wrong shape for the vector prevalence (expected {domainA.n_classes})'
|
||||
assert F.check_prevalence_vector(self.prevalence), \
|
||||
f'the prevalence vector is not valid (either it contains values outside [0,1] or does not sum up to 1)'
|
||||
if isinstance(mixture_points, int):
|
||||
self.mixture_points = np.linspace(0, 1, mixture_points)[::-1]
|
||||
else:
|
||||
self.mixture_points = np.asarray(mixture_points)
|
||||
assert all(np.logical_and(self.mixture_points >= 0, self.mixture_points<=1)), \
|
||||
'mixture_model datatype not understood (expected int or a sequence of real values in [0,1])'
|
||||
self.random_seed = random_seed
|
||||
|
||||
def samples_parameters(self):
|
||||
indexesA, indexesB = [], []
|
||||
for propA in self.mixture_points:
|
||||
for _ in range(self.repeats):
|
||||
nA = int(np.round(self.sample_size * propA))
|
||||
nB = self.sample_size-nA
|
||||
sampleAidx = self.A.sampling_index(nA, *self.prevalence)
|
||||
sampleBidx = self.B.sampling_index(nB, *self.prevalence)
|
||||
indexesA.append(sampleAidx)
|
||||
indexesB.append(sampleBidx)
|
||||
return list(zip(indexesA, indexesB))
|
||||
|
||||
def sample(self, indexes):
|
||||
indexesA, indexesB = indexes
|
||||
sampleA = self.A.sampling_from_index(indexesA)
|
||||
sampleB = self.B.sampling_from_index(indexesB)
|
||||
return sampleA+sampleB
|
||||
|
||||
def total(self):
|
||||
return self.repeats * len(self.mixture_points)
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -163,17 +306,27 @@ if __name__=='__main__':
|
|||
import numpy as np
|
||||
import quapy as qp
|
||||
|
||||
# domainA
|
||||
y = [0]*25 + [1]*25 + [2]*25 + [3]*25
|
||||
X = [str(i)+'-'+str(yi) for i, yi in enumerate(y)]
|
||||
|
||||
X = ['A:'+str(i)+'-'+str(yi) for i, yi in enumerate(y)]
|
||||
data = LabelledCollection(X, y, classes_=sorted(np.unique(y)))
|
||||
|
||||
# p = APP(10, n_prevalences=11, random_seed=42)
|
||||
# p = NPP(10, repeats=10, random_seed=42)
|
||||
p = USimplexPP(10, repeats=10, random_seed=42)
|
||||
# domain B
|
||||
y = [0]*25 + [1]*25 + [2]*25 + [3]*25
|
||||
X = ['B:'+str(i)+'-'+str(yi) for i, yi in enumerate(y)]
|
||||
dataB = LabelledCollection(X, y, classes_=sorted(np.unique(y)))
|
||||
|
||||
for i in p(data):
|
||||
print(i.instances, i.classes, i.prevalence())
|
||||
# p = APP(data, sample_size=10, n_prevalences=11, random_seed=42)
|
||||
# p = NPP(data, sample_size=10, repeats=10, random_seed=42)
|
||||
# p = NPP(data, sample_size=10, repeats=10)
|
||||
# p = USimplexPP(data, sample_size=10, repeats=10)
|
||||
p = CovariateShiftPP(data, dataB, sample_size=10, mixture_points=11, random_seed=1)
|
||||
|
||||
for _ in range(2):
|
||||
print('init generator', p.__class__.__name__)
|
||||
for i in tqdm(p(), total=p.total()):
|
||||
# print(i)
|
||||
print(i.instances, i.labels, i.prevalence())
|
||||
|
||||
print('done')
|
||||
|
||||
|
|
Loading…
Reference in New Issue