1
0
Fork 0

ongoing protocols

This commit is contained in:
Alejandro Moreo Fernandez 2022-05-23 00:20:08 +02:00
parent b453c8fcbc
commit 46e3632200
3 changed files with 223 additions and 314 deletions

View File

@ -1,244 +0,0 @@
import itertools
from collections.abc import Generator
from contextlib import ExitStack
from abc import ABCMeta, abstractmethod
from quapy.data import LabelledCollection
import quapy.functional as F
# 0.1.7
# change the LabelledCollection API (removing protocol-related samplings)
# need to change the two references to the above in the wiki / doc, and code examples...
# removed artificial_prevalence_sampling from functional
# class AbstractProtocol(metaclass=ABCMeta):
# def __call__(self):
# for g in self.gen():
# yield g
#
# @abstractmethod
# def gen(self):
# ...
class AbstractStochasticProtocol(metaclass=ABCMeta):
def __init__(self, seed=None):
self.random_seed = seed
@property
def random_seed(self):
return self._random_seed
@random_seed.setter
def random_seed(self, seed):
self._random_seed = seed
@abstractmethod
def samples_parameters(self):
"""
This function has to return all the necessary parameters to replicate the samples
:return: a list of parameters, each of which serves to deterministically generate a sample
"""
...
@abstractmethod
def sample(self, params):
"""
Extract one sample determined by the given parameters
:param params: all the necessary parameters to generate a sample
:return: one sample (the same sample has to be generated for the same parameters)
"""
...
def __call__(self):
with ExitStack() as stack:
if self.random_seed is not None:
stack.enter_context(qp.util.temp_seed(self.random_seed))
for params in self.samples_parameters():
yield self.sample(params)
class APP(AbstractStochasticProtocol):
"""
Implementation of the artificial prevalence protocol (APP).
The APP consists of exploring a grid of prevalence values containing `n_prevalences` points (e.g.,
[0, 0.05, 0.1, 0.15, ..., 1], if `n_prevalences=21`), and generating all valid combinations of
prevalence values for all classes (e.g., for 3 classes, samples with [0, 0, 1], [0, 0.05, 0.95], ...,
[1, 0, 0] prevalence values of size `sample_size` will be yielded). The number of samples for each valid
combination of prevalence values is indicated by `repeats`.
:param sample_size: integer, number of instances in each sample
:param n_prevalences: the number of equidistant prevalence points to extract from the [0,1] interval for the
grid (default is 21)
:param repeats: number of copies for each valid prevalence vector (default is 1)
:param random_seed: allows replicating samples across runs (default None)
"""
def __init__(self, data:LabelledCollection, sample_size, n_prevalences=21, repeats=1, random_seed=None):
super(APP, self).__init__(random_seed)
self.data = data
self.sample_size = sample_size
self.n_prevalences = n_prevalences
self.repeats = repeats
def prevalence_grid(self, dimensions):
"""
Generates vectors of prevalence values from an exhaustive grid of prevalence values. The
number of prevalence values explored for each dimension depends on `n_prevalences`, so that, if, for example,
`n_prevalences=11` then the prevalence values of the grid are taken from [0, 0.1, 0.2, ..., 0.9, 1]. Only
valid prevalence distributions are returned, i.e., vectors of prevalence values that sum up to 1. For each
valid vector of prevalence values, `repeat` copies are returned. The vector of prevalence values can be
implicit (by setting `return_constrained_dim=False`), meaning that the last dimension (which is constrained
to 1 - sum of the rest) is not returned (note that, quite obviously, in this case the vector does not sum up to
1). Note that this method is deterministic, i.e., there is no random sampling anywhere.
:param dimensions: the number of classes
:return: a `np.ndarray` of shape `(n, dimensions)` if `return_constrained_dim=True` or of shape
`(n, dimensions-1)` if `return_constrained_dim=False`, where `n` is the number of valid combinations found
in the grid multiplied by `repeat`
"""
s = np.linspace(0., 1., self.n_prevalences, endpoint=True)
s = [s] * (dimensions - 1)
prevs = [p for p in itertools.product(*s, repeat=1) if sum(p) <= 1]
prevs = np.asarray(prevs).reshape(len(prevs), -1)
if self.repeats > 1:
prevs = np.repeat(prevs, self.repeats, axis=0)
return prevs
def samples_parameters(self):
indexes = []
for prevs in self.prevalence_grid(dimensions=self.data.n_classes):
index = data.sampling_index(self.sample_size, *prevs)
indexes.append(index)
return indexes
def sample(self, index):
return self.data.sampling_from_index(index)
class NPP(AbstractStochasticProtocol):
"""
A generator of samples that implements the natural prevalence protocol (NPP). The NPP consists of drawing
samples uniformly at random, therefore approximately preserving the natural prevalence of the collection.
:param sample_size: integer, the number of instances in each sample
:param repeats: the number of samples to generate
"""
def __init__(self, data:LabelledCollection, sample_size, repeats=1, random_seed=None):
super(NPP, self).__init__(random_seed)
self.data = data
self.sample_size = sample_size
self.repeats = repeats
self.random_seed = random_seed
def samples_parameters(self):
indexes = []
for _ in range(self.repeats):
index = data.uniform_sampling_index(self.sample_size)
indexes.append(index)
return indexes
def sample(self, index):
return self.data.sampling_from_index(index)
class USimplexPP(AbstractStochasticProtocol):
def __init__(self, data: LabelledCollection, sample_size, repeats=1, random_seed=None):
super(USimplexPP, self).__init__(random_seed)
self.data = data
self.sample_size = sample_size
self.repeats = repeats
self.random_seed = random_seed
def samples_parameters(self):
indexes = []
for prevs in F.uniform_simplex_sampling(n_classes=data.n_classes, size=self.repeats):
index = data.sampling_index(self.sample_size, *prevs)
indexes.append(index)
return indexes
def sample(self, index):
return self.data.sampling_from_index(index)
class CovariateShift(AbstractStochasticProtocol):
"""
Generates mixtures of two domains (A and B) at controlled rates, but preserving the original class prevalence.
:param domainA:
:param domainB:
:param sample_size:
:param repeats:
:param prevalence: the prevalence to preserv along the mixtures. If specified, should be an array containing
one prevalence value (positive float) for each class and summing up to one. If not specified, the prevalence
will be taken from the domain A (default).
:param mixture_points: an integer indicating the number of points to take from a linear scale (e.g., 21 will
generate the mixture points [1, 0.95, 0.9, ..., 0]), or the array of mixture values itself.
the specific points
:param random_seed:
"""
def __init__(
self,
domainA: LabelledCollection,
domainB: LabelledCollection,
sample_size,
repeats=1,
prevalence=None,
mixture_points=11,
random_seed=None):
super(CovariateShift, self).__init__(random_seed)
self.data = data
self.sample_size = sample_size
self.repeats = repeats
if prevalence is None:
self.prevalence = domainA.prevalence()
else:
self.prevalence = np.asarray(prevalence)
assert len(self.prevalence) == domainA.n_classes, \
f'wrong shape for the vector prevalence (expected {domainA.n_classes})'
assert F.check_prevalence_vector(self.prevalence), \
f'the prevalence vector is not valid (either it contains values outside [0,1] or does not sum up to 1)'
assert isinstance(mixture_points, int) or
self.random_seed = random_seed
def samples_parameters(self):
indexes = []
for _ in range(self.repeats):
index = data.uniform_sampling_index(self.sample_size)
indexes.append(index)
return indexes
def sample(self, index):
return self.data.sampling_from_index(index)
if __name__=='__main__':
import numpy as np
import quapy as qp
y = [0]*25 + [1]*25 + [2]*25 + [3]*25
X = [str(i)+'-'+str(yi) for i, yi in enumerate(y)]
data = LabelledCollection(X, y, classes_=sorted(np.unique(y)))
# p=CounterExample(1, 8, 10, 5)
# p = APP(data, sample_size=10, n_prevalences=11, random_seed=42)
# p = NPP(data, sample_size=10, repeats=10, random_seed=42)
# p = NPP(data, sample_size=10, repeats=10)
p = USimplexPP(data, sample_size=10, repeats=10)
for _ in range(2):
print('init generator', p.__class__.__name__)
for i in p():
# print(i)
print(i.instances, i.labels, i.prevalence())
print('done')

View File

@ -1,3 +1,4 @@
import numpy as np
import itertools import itertools
from collections.abc import Generator from collections.abc import Generator
from contextlib import ExitStack from contextlib import ExitStack
@ -5,6 +6,7 @@ from abc import ABCMeta, abstractmethod
from quapy.data import LabelledCollection from quapy.data import LabelledCollection
import quapy.functional as F import quapy.functional as F
from tqdm import tqdm
# 0.1.7 # 0.1.7
@ -12,66 +14,92 @@ import quapy.functional as F
# need to change the two references to the above in the wiki / doc, and code examples... # need to change the two references to the above in the wiki / doc, and code examples...
# removed artificial_prevalence_sampling from functional # removed artificial_prevalence_sampling from functional
# maybe add some parameters in the init of the protocols (or maybe only for IndexableWhateverProtocols
# indicating that the protocol should return indexes, and not samples themselves?
# also: some parameters in the init could be used to indicate that the method should return a tuple with
# unlabelled instances and the vector of prevalence values (and not a LabelledCollection).
# Or: this can be done in a different function; i.e., we use one function (now __call__) to return
# LabelledCollections, and another new one for returning the other output, which is more general for
# evaluation purposes.
class NewAbstractProtocol(metaclass=Generator): # the so-called "gen" function has to be implemented as a protocol. The problem here is that this function
@abstractmethod # should be able to return only unlabelled instances plus a vector of prevalences (and not LabelledCollections).
def send(self, value): # This was coded as different functions in 0.1.6
"""Send a value into the generator.
Return next yielded value or raise StopIteration.
"""
raise StopIteration
@abstractmethod
def throw(self, typ, val=None, tb=None):
"""Raise an exception in the generator.
Return next yielded value or raise StopIteration.
"""
if val is None:
if tb is None:
raise typ
val = typ()
if tb is not None:
val = val.with_traceback(tb)
raise val
class AbstractProtocol(metaclass=ABCMeta): class AbstractProtocol(metaclass=ABCMeta):
"""
Abstract class for sampling protocols.
A sampling protocol defines how to generate samples out of some dataset.
"""
@abstractmethod
def __call__(self): def __call__(self):
""" """
A generator that yields one sample at each iteration Implements the protocol. Yields one sample at a time
:return: yield one sample (instance of :class:`quapy.data.LabelledCollection`) at each iteration :return: yields one sample at a time
""" """
for index in self.indexes(data): ...
yield data.sampling_from_index(index)
def indexes(self, data: LabelledCollection): def total(self):
""" """
A generator that yields one sample index at each iteration. Indicates the total number of samples that the protocol generates.
(This function is mainly a generic decorator that sets, if requested, the local random seed; the real
sampling is implemented by :meth:`_indexes`.)
:param data: the set of data from which samples' indexes are to be drawn :return: The number of samples to generate if known, or `None` otherwise.
:return: one sample index (instance of `np.ndarray`) at each iteration
""" """
return None
class AbstractStochasticSeededProtocol(AbstractProtocol):
"""
An AbstractStochasticSeededProtocol is a protocol that generates, via any random procedure (e.g.,
via random sapling), sequences of `LabelledCollection` samples. The protocol abstraction enforces
the object to be instantiated using a seed, so that the sequence can be completely replicated.
In order to make this functionality possible, the classes extending this abstraction need to
implement only two functions, :meth:`samples_parameters` which generates all the parameters
needed for extracting the samples, and :meth:`sample` that, given some parameters as input,
deterministically generates a sample.
:param seed: the seed for allowing to replicate any sequence of samples. Default is None, meaning that
the sequence will be different every time the protocol is called.
"""
def __init__(self, seed=None):
self.random_seed = seed
@property
def random_seed(self):
return self._random_seed
@random_seed.setter
def random_seed(self, seed):
self._random_seed = seed
@abstractmethod
def samples_parameters(self):
"""
This function has to return all the necessary parameters to replicate the samples
:return: a list of parameters, each of which serves to deterministically generate a sample
"""
...
@abstractmethod
def sample(self, params):
"""
Extract one sample determined by the given parameters
:param params: all the necessary parameters to generate a sample
:return: one sample (the same sample has to be generated for the same parameters)
"""
...
def __call__(self):
with ExitStack() as stack: with ExitStack() as stack:
if self.random_seed is not None: if self.random_seed is not None:
stack.enter_context(qp.util.temp_seed(self.random_seed)) stack.enter_context(qp.util.temp_seed(self.random_seed))
for index in self._indexes(data): for params in self.samples_parameters():
yield index yield self.sample(params)
@abstractmethod
def _indexes(self, data: LabelledCollection):
...
class APP(AbstractProtocol): class APP(AbstractStochasticSeededProtocol):
""" """
Implementation of the artificial prevalence protocol (APP). Implementation of the artificial prevalence protocol (APP).
The APP consists of exploring a grid of prevalence values containing `n_prevalences` points (e.g., The APP consists of exploring a grid of prevalence values containing `n_prevalences` points (e.g.,
@ -80,25 +108,22 @@ class APP(AbstractProtocol):
[1, 0, 0] prevalence values of size `sample_size` will be yielded). The number of samples for each valid [1, 0, 0] prevalence values of size `sample_size` will be yielded). The number of samples for each valid
combination of prevalence values is indicated by `repeats`. combination of prevalence values is indicated by `repeats`.
:param data: a `LabelledCollection` from which the samples will be drawn
:param sample_size: integer, number of instances in each sample :param sample_size: integer, number of instances in each sample
:param n_prevalences: the number of equidistant prevalence points to extract from the [0,1] interval for the :param n_prevalences: the number of equidistant prevalence points to extract from the [0,1] interval for the
grid (default is 21) grid (default is 21)
:param repeats: number of copies for each valid prevalence vector (default is 1) :param repeats: number of copies for each valid prevalence vector (default is 10)
:param random_seed: allows replicating samples across runs (default None) :param random_seed: allows replicating samples across runs (default None)
""" """
def __init__(self, data:LabelledCollection, sample_size, n_prevalences=21, repeats=1, random_seed=None): def __init__(self, data:LabelledCollection, sample_size, n_prevalences=21, repeats=10, random_seed=None):
super(APP, self).__init__(random_seed)
self.data = data self.data = data
self.sample_size = sample_size self.sample_size = sample_size
self.n_prevalences = n_prevalences self.n_prevalences = n_prevalences
self.repeats = repeats self.repeats = repeats
self.random_seed = random_seed
def _indexes(self, data: LabelledCollection): def prevalence_grid(self, dimensions):
for prevs in self.prevalence_grid(dimensions=data.n_classes):
yield data.sampling_index(self.sample_size, *prevs)
def prevalence_grid(self, dimensions, return_constrained_dim=False):
""" """
Generates vectors of prevalence values from an exhaustive grid of prevalence values. The Generates vectors of prevalence values from an exhaustive grid of prevalence values. The
number of prevalence values explored for each dimension depends on `n_prevalences`, so that, if, for example, number of prevalence values explored for each dimension depends on `n_prevalences`, so that, if, for example,
@ -110,8 +135,6 @@ class APP(AbstractProtocol):
1). Note that this method is deterministic, i.e., there is no random sampling anywhere. 1). Note that this method is deterministic, i.e., there is no random sampling anywhere.
:param dimensions: the number of classes :param dimensions: the number of classes
:param return_constrained_dim: set to True to return all dimensions, or to False (default) for ommitting the
constrained dimension
:return: a `np.ndarray` of shape `(n, dimensions)` if `return_constrained_dim=True` or of shape :return: a `np.ndarray` of shape `(n, dimensions)` if `return_constrained_dim=True` or of shape
`(n, dimensions-1)` if `return_constrained_dim=False`, where `n` is the number of valid combinations found `(n, dimensions-1)` if `return_constrained_dim=False`, where `n` is the number of valid combinations found
in the grid multiplied by `repeat` in the grid multiplied by `repeat`
@ -119,43 +142,163 @@ class APP(AbstractProtocol):
s = np.linspace(0., 1., self.n_prevalences, endpoint=True) s = np.linspace(0., 1., self.n_prevalences, endpoint=True)
s = [s] * (dimensions - 1) s = [s] * (dimensions - 1)
prevs = [p for p in itertools.product(*s, repeat=1) if sum(p) <= 1] prevs = [p for p in itertools.product(*s, repeat=1) if sum(p) <= 1]
if return_constrained_dim:
prevs = [p + (1 - sum(p),) for p in prevs]
prevs = np.asarray(prevs).reshape(len(prevs), -1) prevs = np.asarray(prevs).reshape(len(prevs), -1)
if self.repeats > 1: if self.repeats > 1:
prevs = np.repeat(prevs, self.repeats, axis=0) prevs = np.repeat(prevs, self.repeats, axis=0)
return prevs return prevs
def samples_parameters(self):
indexes = []
for prevs in self.prevalence_grid(dimensions=self.data.n_classes):
index = data.sampling_index(self.sample_size, *prevs)
indexes.append(index)
return indexes
class NPP(AbstractProtocol): def sample(self, index):
return self.data.sampling_from_index(index)
def total(self):
return F.num_prevalence_combinations(self.n_prevalences, self.data.n_classes, self.repeats)
class NPP(AbstractStochasticSeededProtocol):
""" """
A generator of samples that implements the natural prevalence protocol (NPP). The NPP consists of drawing A generator of samples that implements the natural prevalence protocol (NPP). The NPP consists of drawing
samples uniformly at random, therefore approximately preserving the natural prevalence of the collection. samples uniformly at random, therefore approximately preserving the natural prevalence of the collection.
:param data: a `LabelledCollection` from which the samples will be drawn
:param sample_size: integer, the number of instances in each sample :param sample_size: integer, the number of instances in each sample
:param repeats: the number of samples to generate :param repeats: the number of samples to generate. Default is 100.
:param random_seed: allows replicating samples across runs (default None)
""" """
def __init__(self, sample_size, repeats=1, random_seed=None): def __init__(self, data:LabelledCollection, sample_size, repeats=100, random_seed=None):
super(NPP, self).__init__(random_seed)
self.data = data
self.sample_size = sample_size self.sample_size = sample_size
self.repeats = repeats self.repeats = repeats
self.random_seed = random_seed self.random_seed = random_seed
def _indexes(self, data: LabelledCollection): def samples_parameters(self):
indexes = []
for _ in range(self.repeats): for _ in range(self.repeats):
yield data.uniform_sampling_index(self.sample_size) index = data.uniform_sampling_index(self.sample_size)
indexes.append(index)
return indexes
def sample(self, index):
return self.data.sampling_from_index(index)
def total(self):
return self.repeats
class USimplexPP(AbstractProtocol):
def __init__(self, sample_size, repeats=1, random_seed=None): class USimplexPP(AbstractStochasticSeededProtocol):
"""
A variant of :class:`APP` that, instead of using a grid of equidistant prevalence values,
relies on the Kraemer algorithm for sampling unit (k-1)-simplex uniformly at random, with
k the number of classes. This protocol covers the entire range of prevalence values in a
statistical sense, i.e., unlike APP there is no guarantee that it is covered precisely
equally for all classes, but it is preferred in cases in which the number of possible
combinations of the grid values of APP makes this endeavour intractable.
:param data: a `LabelledCollection` from which the samples will be drawn
:param sample_size: integer, the number of instances in each sample
:param repeats: the number of samples to generate. Default is 100.
:param random_seed: allows replicating samples across runs (default None)
"""
def __init__(self, data: LabelledCollection, sample_size, repeats=100, random_seed=None):
super(USimplexPP, self).__init__(random_seed)
self.data = data
self.sample_size = sample_size self.sample_size = sample_size
self.repeats = repeats self.repeats = repeats
self.random_seed = random_seed self.random_seed = random_seed
def _indexes(self, data: LabelledCollection): def samples_parameters(self):
indexes = []
for prevs in F.uniform_simplex_sampling(n_classes=data.n_classes, size=self.repeats): for prevs in F.uniform_simplex_sampling(n_classes=data.n_classes, size=self.repeats):
yield data.sampling_index(self.sample_size, *prevs) index = data.sampling_index(self.sample_size, *prevs)
indexes.append(index)
return indexes
def sample(self, index):
return self.data.sampling_from_index(index)
def total(self):
return self.repeats
class CovariateShiftPP(AbstractStochasticSeededProtocol):
"""
Generates mixtures of two domains (A and B) at controlled rates, but preserving the original class prevalence.
:param domainA:
:param domainB:
:param sample_size:
:param repeats:
:param prevalence: the prevalence to preserv along the mixtures. If specified, should be an array containing
one prevalence value (positive float) for each class and summing up to one. If not specified, the prevalence
will be taken from the domain A (default).
:param mixture_points: an integer indicating the number of points to take from a linear scale (e.g., 21 will
generate the mixture points [1, 0.95, 0.9, ..., 0]), or the array of mixture values itself.
the specific points
:param random_seed:
"""
def __init__(
self,
domainA: LabelledCollection,
domainB: LabelledCollection,
sample_size,
repeats=1,
prevalence=None,
mixture_points=11,
random_seed=None):
super(CovariateShiftPP, self).__init__(random_seed)
self.A = domainA
self.B = domainB
self.sample_size = sample_size
self.repeats = repeats
if prevalence is None:
self.prevalence = domainA.prevalence()
else:
self.prevalence = np.asarray(prevalence)
assert len(self.prevalence) == domainA.n_classes, \
f'wrong shape for the vector prevalence (expected {domainA.n_classes})'
assert F.check_prevalence_vector(self.prevalence), \
f'the prevalence vector is not valid (either it contains values outside [0,1] or does not sum up to 1)'
if isinstance(mixture_points, int):
self.mixture_points = np.linspace(0, 1, mixture_points)[::-1]
else:
self.mixture_points = np.asarray(mixture_points)
assert all(np.logical_and(self.mixture_points >= 0, self.mixture_points<=1)), \
'mixture_model datatype not understood (expected int or a sequence of real values in [0,1])'
self.random_seed = random_seed
def samples_parameters(self):
indexesA, indexesB = [], []
for propA in self.mixture_points:
for _ in range(self.repeats):
nA = int(np.round(self.sample_size * propA))
nB = self.sample_size-nA
sampleAidx = self.A.sampling_index(nA, *self.prevalence)
sampleBidx = self.B.sampling_index(nB, *self.prevalence)
indexesA.append(sampleAidx)
indexesB.append(sampleBidx)
return list(zip(indexesA, indexesB))
def sample(self, indexes):
indexesA, indexesB = indexes
sampleA = self.A.sampling_from_index(indexesA)
sampleB = self.B.sampling_from_index(indexesB)
return sampleA+sampleB
def total(self):
return self.repeats * len(self.mixture_points)
@ -163,17 +306,27 @@ if __name__=='__main__':
import numpy as np import numpy as np
import quapy as qp import quapy as qp
# domainA
y = [0]*25 + [1]*25 + [2]*25 + [3]*25 y = [0]*25 + [1]*25 + [2]*25 + [3]*25
X = [str(i)+'-'+str(yi) for i, yi in enumerate(y)] X = ['A:'+str(i)+'-'+str(yi) for i, yi in enumerate(y)]
data = LabelledCollection(X, y, classes_=sorted(np.unique(y))) data = LabelledCollection(X, y, classes_=sorted(np.unique(y)))
# p = APP(10, n_prevalences=11, random_seed=42) # domain B
# p = NPP(10, repeats=10, random_seed=42) y = [0]*25 + [1]*25 + [2]*25 + [3]*25
p = USimplexPP(10, repeats=10, random_seed=42) X = ['B:'+str(i)+'-'+str(yi) for i, yi in enumerate(y)]
dataB = LabelledCollection(X, y, classes_=sorted(np.unique(y)))
for i in p(data): # p = APP(data, sample_size=10, n_prevalences=11, random_seed=42)
print(i.instances, i.classes, i.prevalence()) # p = NPP(data, sample_size=10, repeats=10, random_seed=42)
# p = NPP(data, sample_size=10, repeats=10)
# p = USimplexPP(data, sample_size=10, repeats=10)
p = CovariateShiftPP(data, dataB, sample_size=10, mixture_points=11, random_seed=1)
for _ in range(2):
print('init generator', p.__class__.__name__)
for i in tqdm(p(), total=p.total()):
# print(i)
print(i.instances, i.labels, i.prevalence())
print('done') print('done')