forked from moreo/QuaPy
svmperf in one-vs-all bugfix
This commit is contained in:
parent
7b2d3cb7f1
commit
4c74ff02a3
|
@ -85,4 +85,5 @@ Things to fix:
|
|||
--------------
|
||||
- update unit tests
|
||||
- improve plots
|
||||
- svmperf clean temp dirs; check also ELM when instantiated using SVMperf directly
|
||||
|
||||
|
|
|
@ -880,16 +880,27 @@ class ELM(AggregativeQuantifier, BinaryQuantifier):
|
|||
learning algorithm, which has to be installed and patched for the purpose (see this
|
||||
`script <https://github.com/HLT-ISTI/QuaPy/blob/master/prepare_svmperf.sh>`_).
|
||||
|
||||
:param classifier: an instance of `SVM perf` or None
|
||||
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
|
||||
:param loss: the loss to optimize (see :attr:`quapy.classification.svmperf.SVMperf.valid_losses`)
|
||||
:param kwargs: rest of SVM perf's parameters
|
||||
"""
|
||||
|
||||
def __init__(self, svmperf_base=None, loss='01', **kwargs):
|
||||
def __init__(self, classifier=None, svmperf_base=None, loss='01', **kwargs):
|
||||
self.svmperf_base = svmperf_base if svmperf_base is not None else qp.environ['SVMPERF_HOME']
|
||||
self.loss = loss
|
||||
self.kwargs = kwargs
|
||||
self.classifier = SVMperf(self.svmperf_base, loss=self.loss, **self.kwargs)
|
||||
assert classifier is None or isinstance(classifier, SVMperf), \
|
||||
'param error "classifier": instances of ELM can only be instantiated with classifier SVMperf. ' \
|
||||
'This parameter should either be an instance of SVMperf or None, in which case an SVMperf object ' \
|
||||
'will be instantiaded using "svmperf_base" and "loss"'
|
||||
if classifier is None:
|
||||
self.classifier = SVMperf(self.svmperf_base, loss=self.loss, **self.kwargs)
|
||||
else:
|
||||
if classifier.loss != loss:
|
||||
print(f'[warning]: the loss of the SVMperf object passed to arg "classifier" ({classifier.loss}) '
|
||||
f'does not coincide with arg "loss" ({loss}); the latter will be ignored')
|
||||
self.classifier = classifier
|
||||
|
||||
def fit(self, data: LabelledCollection, fit_classifier=True):
|
||||
self._check_binary(data, self.__class__.__name__)
|
||||
|
@ -913,11 +924,14 @@ class SVMQ(ELM):
|
|||
|
||||
>>> ELM(svmperf_base, loss='q', **kwargs)
|
||||
|
||||
:param classifier: not used, added for compatibility
|
||||
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
|
||||
:param kwargs: rest of SVM perf's parameters
|
||||
"""
|
||||
|
||||
def __init__(self, svmperf_base=None, **kwargs):
|
||||
def __init__(self, classifier=None, svmperf_base=None, **kwargs):
|
||||
assert classifier == None, \
|
||||
'param "classifier" should be None. SVMperf will be instantiated using "svmperf_base" path.'
|
||||
super(SVMQ, self).__init__(svmperf_base, loss='q', **kwargs)
|
||||
|
||||
|
||||
|
@ -929,11 +943,14 @@ class SVMKLD(ELM):
|
|||
|
||||
>>> ELM(svmperf_base, loss='kld', **kwargs)
|
||||
|
||||
:param classifier: not used, added for compatibility
|
||||
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
|
||||
:param kwargs: rest of SVM perf's parameters
|
||||
"""
|
||||
|
||||
def __init__(self, svmperf_base=None, **kwargs):
|
||||
def __init__(self, classifier=None, svmperf_base=None, **kwargs):
|
||||
assert classifier == None, \
|
||||
'param "classifier" should be None. SVMperf will be instantiated using "svmperf_base" path.'
|
||||
super(SVMKLD, self).__init__(svmperf_base, loss='kld', **kwargs)
|
||||
|
||||
|
||||
|
@ -946,11 +963,14 @@ class SVMNKLD(ELM):
|
|||
|
||||
>>> ELM(svmperf_base, loss='nkld', **kwargs)
|
||||
|
||||
:param classifier: not used, added for compatibility
|
||||
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
|
||||
:param kwargs: rest of SVM perf's parameters
|
||||
"""
|
||||
|
||||
def __init__(self, svmperf_base=None, **kwargs):
|
||||
def __init__(self, classifier=None, svmperf_base=None, **kwargs):
|
||||
assert classifier == None, \
|
||||
'param "classifier" should be None. SVMperf will be instantiated using "svmperf_base" path.'
|
||||
super(SVMNKLD, self).__init__(svmperf_base, loss='nkld', **kwargs)
|
||||
|
||||
|
||||
|
@ -962,11 +982,14 @@ class SVMAE(ELM):
|
|||
|
||||
>>> ELM(svmperf_base, loss='mae', **kwargs)
|
||||
|
||||
:param classifier: not used, added for compatibility
|
||||
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
|
||||
:param kwargs: rest of SVM perf's parameters
|
||||
"""
|
||||
|
||||
def __init__(self, svmperf_base=None, **kwargs):
|
||||
def __init__(self, classifier=None, svmperf_base=None, **kwargs):
|
||||
assert classifier == None, \
|
||||
'param "classifier" should be None. SVMperf will be instantiated using "svmperf_base" path.'
|
||||
super(SVMAE, self).__init__(svmperf_base, loss='mae', **kwargs)
|
||||
|
||||
|
||||
|
@ -978,11 +1001,14 @@ class SVMRAE(ELM):
|
|||
|
||||
>>> ELM(svmperf_base, loss='mrae', **kwargs)
|
||||
|
||||
:param classifier: not used, added for compatibility
|
||||
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
|
||||
:param kwargs: rest of SVM perf's parameters
|
||||
"""
|
||||
|
||||
def __init__(self, svmperf_base=None, **kwargs):
|
||||
def __init__(self, classifier=None, svmperf_base=None, **kwargs):
|
||||
assert classifier == None, \
|
||||
'param "classifier" should be None. SVMperf will be instantiated using "svmperf_base" path.'
|
||||
super(SVMRAE, self).__init__(svmperf_base, loss='mrae', **kwargs)
|
||||
|
||||
|
||||
|
|
|
@ -38,7 +38,7 @@ def map_parallel(func, args, n_jobs):
|
|||
return list(itertools.chain.from_iterable(results))
|
||||
|
||||
|
||||
def parallel(func, args, n_jobs, seed = None):
|
||||
def parallel(func, args, n_jobs, seed=None):
|
||||
"""
|
||||
A wrapper of multiprocessing:
|
||||
|
||||
|
|
Loading…
Reference in New Issue