forked from moreo/QuaPy
add uci multiclass datasets
This commit is contained in:
parent
1c258a2000
commit
53b052edc7
|
@ -0,0 +1,85 @@
|
|||
import pickle
|
||||
import os
|
||||
from distribution_matching.commons import METHODS, new_method, show_results
|
||||
|
||||
import quapy as qp
|
||||
from quapy.model_selection import GridSearchQ
|
||||
from quapy.protocol import UPP
|
||||
|
||||
|
||||
SEED = 1
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
qp.environ['SAMPLE_SIZE'] = 500
|
||||
qp.environ['N_JOBS'] = -1
|
||||
n_bags_val = 250
|
||||
n_bags_test = 1000
|
||||
for optim in ['mae', 'mrae']:
|
||||
result_dir = f'results/ucimulti/{optim}'
|
||||
|
||||
os.makedirs(result_dir, exist_ok=True)
|
||||
|
||||
for method in METHODS:
|
||||
if method == 'HDy-OvA': continue
|
||||
if method == 'DIR': continue
|
||||
if method != 'KDEy-ML': continue
|
||||
|
||||
print('Init method', method)
|
||||
|
||||
global_result_path = f'{result_dir}/{method}'
|
||||
|
||||
if not os.path.exists(global_result_path + '.csv'):
|
||||
with open(global_result_path + '.csv', 'wt') as csv:
|
||||
csv.write(f'Method\tDataset\tMAE\tMRAE\tKLD\n')
|
||||
|
||||
with open(global_result_path + '.csv', 'at') as csv:
|
||||
|
||||
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS:
|
||||
|
||||
print('init', dataset)
|
||||
|
||||
local_result_path = global_result_path + '_' + dataset
|
||||
if os.path.exists(local_result_path + '.dataframe'):
|
||||
print(f'result file {local_result_path}.dataframe already exist; skipping')
|
||||
continue
|
||||
|
||||
with qp.util.temp_seed(SEED):
|
||||
|
||||
param_grid, quantifier = new_method(method, max_iter=3000)
|
||||
|
||||
data = qp.datasets.fetch_UCIMulticlassDataset(dataset)
|
||||
|
||||
# model selection
|
||||
train, test = data.train_test
|
||||
train, val = train.split_stratified(random_state=SEED)
|
||||
|
||||
protocol = UPP(val, repeats=n_bags_val)
|
||||
modsel = GridSearchQ(
|
||||
quantifier, param_grid, protocol, refit=True, n_jobs=-1, verbose=1, error=optim
|
||||
)
|
||||
|
||||
try:
|
||||
modsel.fit(train)
|
||||
|
||||
print(f'best params {modsel.best_params_}')
|
||||
print(f'best score {modsel.best_score_}')
|
||||
pickle.dump(
|
||||
(modsel.best_params_, modsel.best_score_,),
|
||||
open(f'{local_result_path}.hyper.pkl', 'wb'), pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
quantifier = modsel.best_model()
|
||||
except:
|
||||
print('something went wrong... reporting CC')
|
||||
quantifier = qp.method.aggregative.CC(LR()).fit(train)
|
||||
|
||||
protocol = UPP(test, repeats=n_bags_test)
|
||||
report = qp.evaluation.evaluation_report(quantifier, protocol, error_metrics=['mae', 'mrae', 'kld'],
|
||||
verbose=True)
|
||||
report.to_csv(f'{local_result_path}.dataframe')
|
||||
means = report.mean()
|
||||
csv.write(f'{method}\t{data.name}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\n')
|
||||
csv.flush()
|
||||
|
||||
show_results(global_result_path)
|
Loading…
Reference in New Issue