diff --git a/TweetSentQuant/experiments_NPP.py b/TweetSentQuant/experiments_NPP.py index 37d93f9..bd9b808 100644 --- a/TweetSentQuant/experiments_NPP.py +++ b/TweetSentQuant/experiments_NPP.py @@ -58,6 +58,7 @@ def quantification_ensembles(): param_mod_sel = { 'sample_size': settings.SAMPLE_SIZE, 'n_repetitions': 1000, + 'protocol': 'npp', 'verbose': False } common = { @@ -72,13 +73,13 @@ def quantification_ensembles(): # hyperparameters will be evaluated within each quantifier of the ensemble, and so the typical model selection # will be skipped (by setting hyperparameters to None) hyper_none = None - #yield 'epaccmaeptr', EPACC(newLR(), optim='mae', policy='ptr', **common), hyper_none + yield 'epaccmaeptr', EPACC(newLR(), optim='mae', policy='ptr', **common), hyper_none yield 'epaccmaemae1k', EPACC(newLR(), optim='mae', policy='mae', **common), hyper_none # yield 'esldmaeptr', EEMQ(newLR(), optim='mae', policy='ptr', **common), hyper_none # yield 'esldmaemae', EEMQ(newLR(), optim='mae', policy='mae', **common), hyper_none - #yield 'epaccmraeptr', EPACC(newLR(), optim='mrae', policy='ptr', **common), hyper_none - #yield 'epaccmraemrae', EPACC(newLR(), optim='mrae', policy='mrae', **common), hyper_none + yield 'epaccmraeptr', EPACC(newLR(), optim='mrae', policy='ptr', **common), hyper_none + yield 'epaccmraemrae', EPACC(newLR(), optim='mrae', policy='mrae', **common), hyper_none #yield 'esldmraeptr', EEMQ(newLR(), optim='mrae', policy='ptr', **common), hyper_none #yield 'esldmraemrae', EEMQ(newLR(), optim='mrae', policy='mrae', **common), hyper_none