forked from moreo/QuaPy
mergin
This commit is contained in:
parent
6663b4c91d
commit
5caf555d65
|
@ -1,4 +1,5 @@
|
||||||
import quapy as qp
|
import quapy as qp
|
||||||
|
from method.kdey import KDEyML
|
||||||
from quapy.method.non_aggregative import DMx
|
from quapy.method.non_aggregative import DMx
|
||||||
from quapy.protocol import APP
|
from quapy.protocol import APP
|
||||||
from quapy.method.aggregative import DMy
|
from quapy.method.aggregative import DMy
|
||||||
|
@ -11,12 +12,13 @@ from time import time
|
||||||
In this example, we show how to perform model selection on a DistributionMatching quantifier.
|
In this example, we show how to perform model selection on a DistributionMatching quantifier.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
model = DMy(LogisticRegression())
|
model = KDEyML(LogisticRegression())
|
||||||
|
|
||||||
qp.environ['SAMPLE_SIZE'] = 100
|
qp.environ['SAMPLE_SIZE'] = 100
|
||||||
qp.environ['N_JOBS'] = -1
|
qp.environ['N_JOBS'] = -1
|
||||||
|
|
||||||
training, test = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5).train_test
|
# training, test = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5).train_test
|
||||||
|
training, test = qp.datasets.fetch_UCIMulticlassDataset('dry-bean').train_test
|
||||||
|
|
||||||
with qp.util.temp_seed(0):
|
with qp.util.temp_seed(0):
|
||||||
|
|
||||||
|
@ -39,14 +41,13 @@ with qp.util.temp_seed(0):
|
||||||
param_grid = {
|
param_grid = {
|
||||||
'classifier__C': np.logspace(-3,3,7),
|
'classifier__C': np.logspace(-3,3,7),
|
||||||
'classifier__class_weight': ['balanced', None],
|
'classifier__class_weight': ['balanced', None],
|
||||||
'nbins': [8, 16, 32, 64, 'poooo'],
|
'bandwidth': np.linspace(0.01, 0.2, 20),
|
||||||
}
|
}
|
||||||
|
|
||||||
tinit = time()
|
tinit = time()
|
||||||
|
|
||||||
|
model = OLD_GridSearchQ(
|
||||||
# model = OLD_GridSearchQ(
|
# model = qp.model_selection.GridSearchQ(
|
||||||
model = qp.model_selection.GridSearchQ(
|
|
||||||
model=model,
|
model=model,
|
||||||
param_grid=param_grid,
|
param_grid=param_grid,
|
||||||
protocol=protocol,
|
protocol=protocol,
|
||||||
|
|
|
@ -0,0 +1,234 @@
|
||||||
|
from typing import Union
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.base import BaseEstimator
|
||||||
|
from sklearn.neighbors import KernelDensity
|
||||||
|
|
||||||
|
import quapy as qp
|
||||||
|
from quapy.data import LabelledCollection
|
||||||
|
from quapy.method.aggregative import AggregativeProbabilisticQuantifier, cross_generate_predictions
|
||||||
|
import quapy.functional as F
|
||||||
|
|
||||||
|
from sklearn.metrics.pairwise import rbf_kernel
|
||||||
|
|
||||||
|
|
||||||
|
class KDEBase:
|
||||||
|
|
||||||
|
BANDWIDTH_METHOD = ['scott', 'silverman']
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def _check_bandwidth(cls, bandwidth):
|
||||||
|
assert bandwidth in KDEBase.BANDWIDTH_METHOD or isinstance(bandwidth, float), \
|
||||||
|
f'invalid bandwidth, valid ones are {KDEBase.BANDWIDTH_METHOD} or float values'
|
||||||
|
if isinstance(bandwidth, float):
|
||||||
|
assert 0 < bandwidth < 1, "the bandwith for KDEy should be in (0,1), since this method models the unit simplex"
|
||||||
|
|
||||||
|
def get_kde_function(self, X, bandwidth):
|
||||||
|
return KernelDensity(bandwidth=bandwidth).fit(X)
|
||||||
|
|
||||||
|
def pdf(self, kde, X):
|
||||||
|
return np.exp(kde.score_samples(X))
|
||||||
|
|
||||||
|
def get_mixture_components(self, X, y, n_classes, bandwidth):
|
||||||
|
return [self.get_kde_function(X[y == cat], bandwidth) for cat in range(n_classes)]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class KDEyML(AggregativeProbabilisticQuantifier, KDEBase):
|
||||||
|
|
||||||
|
def __init__(self, classifier: BaseEstimator, val_split=10, bandwidth=0.1, n_jobs=None, random_state=0):
|
||||||
|
self._check_bandwidth(bandwidth)
|
||||||
|
self.classifier = classifier
|
||||||
|
self.val_split = val_split
|
||||||
|
self.bandwidth = bandwidth
|
||||||
|
self.n_jobs = n_jobs
|
||||||
|
self.random_state=random_state
|
||||||
|
|
||||||
|
def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, LabelledCollection] = None):
|
||||||
|
if val_split is None:
|
||||||
|
val_split = self.val_split
|
||||||
|
|
||||||
|
self.classifier, y, posteriors, _, _ = cross_generate_predictions(
|
||||||
|
data, self.classifier, val_split, probabilistic=True, fit_classifier=fit_classifier, n_jobs=self.n_jobs
|
||||||
|
)
|
||||||
|
|
||||||
|
self.mix_densities = self.get_mixture_components(posteriors, y, data.n_classes, self.bandwidth)
|
||||||
|
|
||||||
|
return self
|
||||||
|
|
||||||
|
def aggregate(self, posteriors: np.ndarray):
|
||||||
|
"""
|
||||||
|
Searches for the mixture model parameter (the sought prevalence values) that maximizes the likelihood
|
||||||
|
of the data (i.e., that minimizes the negative log-likelihood)
|
||||||
|
|
||||||
|
:param posteriors: instances in the sample converted into posterior probabilities
|
||||||
|
:return: a vector of class prevalence estimates
|
||||||
|
"""
|
||||||
|
np.random.RandomState(self.random_state)
|
||||||
|
epsilon = 1e-10
|
||||||
|
n_classes = len(self.mix_densities)
|
||||||
|
test_densities = [self.pdf(kde_i, posteriors) for kde_i in self.mix_densities]
|
||||||
|
|
||||||
|
def neg_loglikelihood(prev):
|
||||||
|
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip (prev, test_densities))
|
||||||
|
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
|
||||||
|
return -np.sum(test_loglikelihood)
|
||||||
|
|
||||||
|
return F.optim_minimize(neg_loglikelihood, n_classes)
|
||||||
|
|
||||||
|
|
||||||
|
class KDEyHD(AggregativeProbabilisticQuantifier, KDEBase):
|
||||||
|
|
||||||
|
def __init__(self, classifier: BaseEstimator, val_split=10, divergence: str='HD',
|
||||||
|
bandwidth=0.1, n_jobs=None, random_state=0, montecarlo_trials=10000):
|
||||||
|
|
||||||
|
self._check_bandwidth(bandwidth)
|
||||||
|
self.classifier = classifier
|
||||||
|
self.val_split = val_split
|
||||||
|
self.divergence = divergence
|
||||||
|
self.bandwidth = bandwidth
|
||||||
|
self.n_jobs = n_jobs
|
||||||
|
self.random_state=random_state
|
||||||
|
self.montecarlo_trials = montecarlo_trials
|
||||||
|
|
||||||
|
def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, LabelledCollection] = None):
|
||||||
|
if val_split is None:
|
||||||
|
val_split = self.val_split
|
||||||
|
|
||||||
|
self.classifier, y, posteriors, _, _ = cross_generate_predictions(
|
||||||
|
data, self.classifier, val_split, probabilistic=True, fit_classifier=fit_classifier, n_jobs=self.n_jobs
|
||||||
|
)
|
||||||
|
|
||||||
|
self.mix_densities = self.get_mixture_components(posteriors, y, data.n_classes, self.bandwidth)
|
||||||
|
|
||||||
|
N = self.montecarlo_trials
|
||||||
|
rs = self.random_state
|
||||||
|
n = data.n_classes
|
||||||
|
self.reference_samples = np.vstack([kde_i.sample(N//n, random_state=rs) for kde_i in self.mix_densities])
|
||||||
|
self.reference_classwise_densities = np.asarray([self.pdf(kde_j, self.reference_samples) for kde_j in self.mix_densities])
|
||||||
|
self.reference_density = np.mean(self.reference_classwise_densities, axis=0) # equiv. to (uniform @ self.reference_classwise_densities)
|
||||||
|
|
||||||
|
return self
|
||||||
|
|
||||||
|
def aggregate(self, posteriors: np.ndarray):
|
||||||
|
# we retain all n*N examples (sampled from a mixture with uniform parameter), and then
|
||||||
|
# apply importance sampling (IS). In this version we compute D(p_alpha||q) with IS
|
||||||
|
n_classes = len(self.mix_densities)
|
||||||
|
|
||||||
|
test_kde = self.get_kde_function(posteriors, self.bandwidth)
|
||||||
|
test_densities = self.pdf(test_kde, self.reference_samples)
|
||||||
|
|
||||||
|
def f_squared_hellinger(u):
|
||||||
|
return (np.sqrt(u)-1)**2
|
||||||
|
|
||||||
|
# todo: this will fail when self.divergence is a callable, and is not the right place to do it anyway
|
||||||
|
if self.divergence.lower() == 'hd':
|
||||||
|
f = f_squared_hellinger
|
||||||
|
else:
|
||||||
|
raise ValueError('only squared HD is currently implemented')
|
||||||
|
|
||||||
|
epsilon = 1e-10
|
||||||
|
qs = test_densities + epsilon
|
||||||
|
rs = self.reference_density + epsilon
|
||||||
|
iw = qs/rs #importance weights
|
||||||
|
p_class = self.reference_classwise_densities + epsilon
|
||||||
|
fracs = p_class/qs
|
||||||
|
|
||||||
|
def divergence(prev):
|
||||||
|
# ps / qs = (prev @ p_class) / qs = prev @ (p_class / qs) = prev @ fracs
|
||||||
|
ps_div_qs = prev @ fracs
|
||||||
|
return np.mean( f(ps_div_qs) * iw )
|
||||||
|
|
||||||
|
return F.optim_minimize(divergence, n_classes)
|
||||||
|
|
||||||
|
|
||||||
|
class KDEyCS(AggregativeProbabilisticQuantifier):
|
||||||
|
|
||||||
|
def __init__(self, classifier: BaseEstimator, val_split=10, bandwidth=0.1, n_jobs=None, random_state=0):
|
||||||
|
KDEBase._check_bandwidth(bandwidth)
|
||||||
|
self.classifier = classifier
|
||||||
|
self.val_split = val_split
|
||||||
|
self.bandwidth = bandwidth
|
||||||
|
self.n_jobs = n_jobs
|
||||||
|
self.random_state=random_state
|
||||||
|
|
||||||
|
def gram_matrix_mix_sum(self, X, Y=None):
|
||||||
|
# this adapts the output of the rbf_kernel function (pairwise evaluations of Gaussian kernels k(x,y))
|
||||||
|
# to contain pairwise evaluations of N(x|mu,Sigma1+Sigma2) with mu=y and Sigma1 and Sigma2 are
|
||||||
|
# two "scalar matrices" (h^2)*I each, so Sigma1+Sigma2 has scalar 2(h^2) (h is the bandwidth)
|
||||||
|
h = self.bandwidth
|
||||||
|
variance = 2 * (h**2)
|
||||||
|
nD = X.shape[1]
|
||||||
|
gamma = 1/(2*variance)
|
||||||
|
norm_factor = 1/np.sqrt(((2*np.pi)**nD) * (variance**(nD)))
|
||||||
|
gram = norm_factor * rbf_kernel(X, Y, gamma=gamma)
|
||||||
|
return gram.sum()
|
||||||
|
|
||||||
|
def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, LabelledCollection] = None):
|
||||||
|
if val_split is None:
|
||||||
|
val_split = self.val_split
|
||||||
|
|
||||||
|
self.classifier, y, posteriors, _, _ = cross_generate_predictions(
|
||||||
|
data, self.classifier, val_split, probabilistic=True, fit_classifier=fit_classifier, n_jobs=self.n_jobs
|
||||||
|
)
|
||||||
|
|
||||||
|
assert all(sorted(np.unique(y)) == np.arange(data.n_classes)), \
|
||||||
|
'label name gaps not allowed in current implementation'
|
||||||
|
|
||||||
|
n = data.n_classes
|
||||||
|
P = posteriors
|
||||||
|
|
||||||
|
# counts_inv keeps track of the relative weight of each datapoint within its class
|
||||||
|
# (i.e., the weight in its KDE model)
|
||||||
|
counts_inv = 1 / (data.counts())
|
||||||
|
|
||||||
|
# tr_tr_sums corresponds to symbol \overline{B} in the paper
|
||||||
|
tr_tr_sums = np.zeros(shape=(n,n), dtype=float)
|
||||||
|
for i in range(n):
|
||||||
|
for j in range(n):
|
||||||
|
if i > j:
|
||||||
|
tr_tr_sums[i,j] = tr_tr_sums[j,i]
|
||||||
|
else:
|
||||||
|
block = self.gram_matrix_mix_sum(P[y == i], P[y == j] if i!=j else None)
|
||||||
|
tr_tr_sums[i, j] = block
|
||||||
|
|
||||||
|
# keep track of these data structures for the test phase
|
||||||
|
self.Ptr = P
|
||||||
|
self.ytr = y
|
||||||
|
self.tr_tr_sums = tr_tr_sums
|
||||||
|
self.counts_inv = counts_inv
|
||||||
|
|
||||||
|
return self
|
||||||
|
|
||||||
|
|
||||||
|
def aggregate(self, posteriors: np.ndarray):
|
||||||
|
Ptr = self.Ptr
|
||||||
|
Pte = posteriors
|
||||||
|
y = self.ytr
|
||||||
|
tr_tr_sums = self.tr_tr_sums
|
||||||
|
|
||||||
|
M, nD = Pte.shape
|
||||||
|
Minv = (1/M) # t in the paper
|
||||||
|
n = Ptr.shape[1]
|
||||||
|
|
||||||
|
|
||||||
|
# becomes a constant that does not affect the optimization, no need to compute it
|
||||||
|
# partC = 0.5*np.log(self.gram_matrix_mix_sum(Pte) * Kinv * Kinv)
|
||||||
|
|
||||||
|
# tr_te_sums corresponds to \overline{a}*(1/Li)*(1/M) in the paper (note the constants
|
||||||
|
# are already aggregated to tr_te_sums, so these multiplications are not carried out
|
||||||
|
# at each iteration of the optimization phase)
|
||||||
|
tr_te_sums = np.zeros(shape=n, dtype=float)
|
||||||
|
for i in range(n):
|
||||||
|
tr_te_sums[i] = self.gram_matrix_mix_sum(Ptr[y==i], Pte)
|
||||||
|
|
||||||
|
def divergence(alpha):
|
||||||
|
# called \overline{r} in the paper
|
||||||
|
alpha_ratio = alpha * self.counts_inv
|
||||||
|
|
||||||
|
# recal that tr_te_sums already accounts for the constant terms (1/Li)*(1/M)
|
||||||
|
partA = -np.log((alpha_ratio @ tr_te_sums) * Minv)
|
||||||
|
partB = 0.5 * np.log(alpha_ratio @ tr_tr_sums @ alpha_ratio)
|
||||||
|
return partA + partB #+ partC
|
||||||
|
|
||||||
|
return F.optim_minimize(divergence, n)
|
||||||
|
|
Loading…
Reference in New Issue