1
0
Fork 0

result file format check, read, load, and evaluation with pandas

This commit is contained in:
Alejandro Moreo Fernandez 2021-10-22 19:03:15 +02:00
parent 646d21873f
commit 5f15b365fe
3 changed files with 256 additions and 120 deletions

View File

@ -1,6 +1,12 @@
import os.path
from typing import List, Tuple, Union
import pandas as pd
import quapy as qp
import numpy as np
import sklearn
import re
# def load_binary_raw_document(path):
@ -40,40 +46,162 @@ def gen_load_samples_T2B(path_dir:str, ground_truth_path:str = None):
class ResultSubmission:
def __init__(self, team_name, run_name, task_name):
assert isinstance(team_name, str) and team_name, \
f'invalid value encountered for team_name'
assert isinstance(run_name, str) and run_name, \
f'invalid value encountered for run_name'
assert isinstance(task_name, str) and task_name in {'T1A', 'T1B', 'T2A', 'T2B'}, \
f'invalid value encountered for task_name; valid values are T1A, T1B, T2A, and T2B'
self.team_name = team_name
self.run_name = run_name
self.task_name = task_name
self.data = {}
DEV_LEN = 1000
TEST_LEN = 5000
ERROR_TOL = 1E-3
def __init__(self, categories: List[str]):
if not isinstance(categories, list) or len(categories) < 2:
raise TypeError('wrong format for categories; a list with at least two category names (str) was expected')
self.categories = categories
self.df = pd.DataFrame(columns=['filename'] + list(categories))
self.inferred_type = None
def add(self, sample_name:str, prevalence_values:np.ndarray):
# assert the result is a valid sample_name (not repeated)
pass
if not isinstance(sample_name, str):
raise TypeError(f'error: expected str for sample_sample, found {type(sample_name)}')
if not isinstance(prevalence_values, np.ndarray):
raise TypeError(f'error: expected np.ndarray for prevalence_values, found {type(prevalence_values)}')
if self.inferred_type is None:
if sample_name.startswith('test'):
self.inferred_type = 'test'
elif sample_name.startswith('dev'):
self.inferred_type = 'dev'
else:
if not sample_name.startswith(self.inferred_type):
raise ValueError(f'error: sample "{sample_name}" is not a valid entry for type "{self.inferred_type}"')
if not re.match("(test|dev)_sample_\d+\.txt", sample_name):
raise ValueError(f'error: wrong format "{sample_name}"; right format is (test|dev)_sample_<number>.txt')
if sample_name in self.df.filename.values:
raise ValueError(f'error: prevalence values for "{sample_name}" already added')
if prevalence_values.ndim!=1 and prevalence_values.size != len(self.categories):
raise ValueError(f'error: wrong shape found for prevalence vector {prevalence_values}')
if (prevalence_values<0).any() or (prevalence_values>1).any():
raise ValueError(f'error: prevalence values out of range [0,1] for "{sample_name}"')
if np.abs(prevalence_values.sum()-1) > ResultSubmission.ERROR_TOL:
raise ValueError(f'error: prevalence values do not sum up to one for "{sample_name}"'
f'(error tolerance {ResultSubmission.ERROR_TOL})')
new_entry = dict([('filename',sample_name)]+[(col_i,prev_i) for col_i, prev_i in zip(self.categories, prevalence_values)])
self.df = self.df.append(new_entry, ignore_index=True)
def __len__(self):
return len(self.data)
return len(self.df)
@classmethod
def load(cls, path: str) -> 'ResultSubmission':
pass
df, inferred_type = ResultSubmission.check_file_format(path, return_inferred_type=True)
r = ResultSubmission(categories=df.columns.values.tolist())
r.inferred_type = inferred_type
r.df = df
return r
def dump(self, path:str):
# assert all samples are covered (check for test and dev accordingly)
pass
ResultSubmission.check_dataframe_format(self.df)
self.df.to_csv(path)
def get(self, sample_name:str):
pass
sel = self.df.loc[self.df['filename'] == sample_name]
if sel.empty:
return None
else:
return sel.loc[:,self.df.columns[1]:].values.flatten()
@classmethod
def check_file_format(cls, path, return_inferred_type=False) -> Union[pd.DataFrame, Tuple[pd.DataFrame, str]]:
df = pd.read_csv(path, index_col=0)
return ResultSubmission.check_dataframe_format(df, path=path, return_inferred_type=return_inferred_type)
@classmethod
def check_dataframe_format(cls, df, path=None, return_inferred_type=False) -> Union[pd.DataFrame, Tuple[pd.DataFrame, str]]:
hint_path = '' # if given, show the data path in the error messages
if path is not None:
hint_path = f' in {path}'
if 'filename' not in df.columns or len(df.columns) < 3:
raise ValueError(f'wrong header{hint_path}, the format of the header should be ",filename,<cat_1>,...,<cat_n>"')
if df.empty:
raise ValueError(f'error{hint_path}: results file is empty')
elif len(df) == ResultSubmission.DEV_LEN:
inferred_type = 'dev'
expected_len = ResultSubmission.DEV_LEN
elif len(df) == ResultSubmission.TEST_LEN:
inferred_type = 'test'
expected_len = ResultSubmission.TEST_LEN
else:
raise ValueError(f'wrong number of prevalence values found{hint_path}; '
f'expected {ResultSubmission.DEV_LEN} for development sets and '
f'{ResultSubmission.TEST_LEN} for test sets; found {len(df)}')
set_names = frozenset(df.filename)
for i in range(expected_len):
if f'{inferred_type}_sample_{i}.txt' not in set_names:
raise ValueError(f'{hint_path} a file with {len(df)} entries is assumed to be of type '
f'"{inferred_type}" but entry {inferred_type}_sample_{i}.txt is missing '
f'(among perhaps many others)')
for category_name in df.columns[1:]:
if (df[category_name] < 0).any() or (df[category_name] > 1).any():
raise ValueError(f'{hint_path} column "{category_name}" contains values out of range [0,1]')
prevs = df.loc[:, df.columns[1]:].values
round_errors = np.abs(prevs.sum(axis=-1) - 1.) > ResultSubmission.ERROR_TOL
if round_errors.any():
raise ValueError(f'warning: prevalence values in rows with id {np.where(round_errors)[0].tolist()} '
f'do not sum up to 1 (error tolerance {ResultSubmission.ERROR_TOL}), '
f'probably due to some rounding errors.')
if return_inferred_type:
return df, inferred_type
else:
return df
def sort_categories(self):
self.df = self.df.reindex([self.df.columns[0]] + sorted(self.df.columns[1:]), axis=1)
self.categories = sorted(self.categories)
def evaluate_submission(ground_truth_prevs: ResultSubmission, submission_prevs: ResultSubmission):
pass
def evaluate_submission(true_prevs: ResultSubmission, predicted_prevs: ResultSubmission, sample_size=1000, average=True):
if len(true_prevs) != len(predicted_prevs):
raise ValueError(f'size mismatch, groun truth has {len(true_prevs)} entries '
f'while predictions contain {len(predicted_prevs)} entries')
true_prevs.sort_categories()
predicted_prevs.sort_categories()
if true_prevs.categories != predicted_prevs.categories:
raise ValueError(f'these result files are not comparable since the categories are different')
ae, rae = [], []
for sample_name in true_prevs.df.filename.values:
ae.append(qp.error.mae(true_prevs.get(sample_name), predicted_prevs.get(sample_name)))
rae.append(qp.error.mrae(true_prevs.get(sample_name), predicted_prevs.get(sample_name), eps=sample_size))
ae = np.asarray(ae)
rae = np.asarray(rae)
if average:
return ae.mean(), rae.mean()
else:
return ae, rae
# r = ResultSubmission(['negative', 'positive'])
# from tqdm import tqdm
# for i in tqdm(range(1000), total=1000):
# r.add(f'dev_sample_{i}.txt', np.asarray([0.5, 0.5]))
# r.dump('./path.csv')
r = ResultSubmission.load('./data/T1A/public/dummy_submission.csv')
t = ResultSubmission.load('./data/T1A/public/dummy_submission (copy).csv')
# print(r.df)
# print(r.get('dev_sample_10.txt'))
print(evaluate_submission(r, t))
# s = ResultSubmission.load('./data/T1A/public/dummy_submission.csv')
#
# print(s)

View File

@ -31,8 +31,6 @@ dev_prev = pd.read_csv(os.path.join(path_binary_vector, 'public', 'dev_prevalenc
print(dev_prev)
scores = {}
for quantifier in [CC]: #, ACC, PCC, PACC, EMQ, HDy]:

View File

@ -1,3 +1,4 @@
from abc import abstractmethod
from typing import List, Union
import numpy as np
@ -8,6 +9,112 @@ from sklearn.model_selection import train_test_split, RepeatedStratifiedKFold
from quapy.functional import artificial_prevalence_sampling, strprev
# class Sampling:
#
# @abstractmethod
# def load(cls, path: str, loader_func: callable, classes=None): ...
#
# @abstractmethod
# @property
# def __len__(self): ...
#
# @abstractmethod
# @property
# def prevalence(self): ...
#
# @abstractmethod
# @property
# def n_classes(self):
#
# @property
# def binary(self):
# return self.n_classes == 2
#
# def uniform_sampling_index(self, size):
# return np.random.choice(len(self), size, replace=False)
#
# def uniform_sampling(self, size):
# unif_index = self.uniform_sampling_index(size)
# return self.sampling_from_index(unif_index)
#
# def sampling(self, size, *prevs, shuffle=True):
# prev_index = self.sampling_index(size, *prevs, shuffle=shuffle)
# return self.sampling_from_index(prev_index)
#
# def sampling_from_index(self, index):
# documents = self.instances[index]
# labels = self.labels[index]
# return LabelledCollection(documents, labels, classes_=self.classes_)
#
# def split_stratified(self, train_prop=0.6, random_state=None):
# # with temp_seed(42):
# tr_docs, te_docs, tr_labels, te_labels = \
# train_test_split(self.instances, self.labels, train_size=train_prop, stratify=self.labels,
# random_state=random_state)
# return LabelledCollection(tr_docs, tr_labels), LabelledCollection(te_docs, te_labels)
#
# def artificial_sampling_generator(self, sample_size, n_prevalences=101, repeats=1):
# dimensions = self.n_classes
# for prevs in artificial_prevalence_sampling(dimensions, n_prevalences, repeats):
# yield self.sampling(sample_size, *prevs)
#
# def artificial_sampling_index_generator(self, sample_size, n_prevalences=101, repeats=1):
# dimensions = self.n_classes
# for prevs in artificial_prevalence_sampling(dimensions, n_prevalences, repeats):
# yield self.sampling_index(sample_size, *prevs)
#
# def natural_sampling_generator(self, sample_size, repeats=100):
# for _ in range(repeats):
# yield self.uniform_sampling(sample_size)
#
# def natural_sampling_index_generator(self, sample_size, repeats=100):
# for _ in range(repeats):
# yield self.uniform_sampling_index(sample_size)
#
# def __add__(self, other):
# if other is None:
# return self
# elif issparse(self.instances) and issparse(other.instances):
# join_instances = vstack([self.instances, other.instances])
# elif isinstance(self.instances, list) and isinstance(other.instances, list):
# join_instances = self.instances + other.instances
# elif isinstance(self.instances, np.ndarray) and isinstance(other.instances, np.ndarray):
# join_instances = np.concatenate([self.instances, other.instances])
# else:
# raise NotImplementedError('unsupported operation for collection types')
# labels = np.concatenate([self.labels, other.labels])
# return LabelledCollection(join_instances, labels)
#
# @property
# def Xy(self):
# return self.instances, self.labels
#
# def stats(self, show=True):
# ninstances = len(self)
# instance_type = type(self.instances[0])
# if instance_type == list:
# nfeats = len(self.instances[0])
# elif instance_type == np.ndarray or issparse(self.instances):
# nfeats = self.instances.shape[1]
# else:
# nfeats = '?'
# stats_ = {'instances': ninstances,
# 'type': instance_type,
# 'features': nfeats,
# 'classes': self.classes_,
# 'prevs': strprev(self.prevalence())}
# if show:
# print(f'#instances={stats_["instances"]}, type={stats_["type"]}, #features={stats_["features"]}, '
# f'#classes={stats_["classes"]}, prevs={stats_["prevs"]}')
# return stats_
#
# def kFCV(self, nfolds=5, nrepeats=1, random_state=0):
# kf = RepeatedStratifiedKFold(n_splits=nfolds, n_repeats=nrepeats, random_state=random_state)
# for train_index, test_index in kf.split(*self.Xy):
# train = self.sampling_from_index(train_index)
# test = self.sampling_from_index(test_index)
# yield train, test
class LabelledCollection:
'''
A LabelledCollection is a set of objects each with a label associated to it.
@ -176,104 +283,7 @@ class LabelledCollection:
yield train, test
class MultilingualLabelledCollection:
def __init__(self, langs:List[str], labelledCollections:List[LabelledCollection]):
assert len(langs) == len(labelledCollections), 'length mismatch for langs and labelledCollection lists'
assert all(isinstance(lc, LabelledCollection) for lc in labelledCollections), 'unexpected type for labelledCollections'
assert all(labelledCollections[0].classes_ == lc_i.classes_ for lc_i in labelledCollections[1:]), \
'inconsistent classes found for some labelled collections'
self.llc = {l: lc for l, lc in zip(langs, labelledCollections)}
self.classes_=labelledCollections[0].classes_
@classmethod
def fromLangDict(cls, lang_labelledCollection:dict):
return MultilingualLabelledCollection(*list(zip(*list(lang_labelledCollection.items()))))
def langs(self):
return list(sorted(self.llc.keys()))
def __getitem__(self, lang)->LabelledCollection:
return self.llc[lang]
@classmethod
def load(cls, path: str, loader_func: callable):
return MultilingualLabelledCollection(*loader_func(path))
def __len__(self):
return sum(map(len, self.llc.values()))
def prevalence(self):
prev = np.asarray([lc.prevalence() * len(lc) for lc in self.llc.values()]).sum(axis=0)
return prev / prev.sum()
def language_prevalence(self):
lang_count = np.asarray([len(self.llc[l]) for l in self.langs()])
return lang_count / lang_count.sum()
def counts(self):
return np.asarray([lc.counts() for lc in self.llc.values()]).sum(axis=0)
@property
def n_classes(self):
return len(self.classes_)
@property
def binary(self):
return self.n_classes == 2
def __check_langs(self, l_dict:dict):
assert len(l_dict)==len(self.langs()), 'wrong number of languages'
assert all(l in l_dict for l in self.langs()), 'missing languages in l_sizes'
def __check_sizes(self, l_sizes: Union[int,dict]):
assert isinstance(l_sizes, int) or isinstance(l_sizes, dict), 'unexpected type for l_sizes'
if isinstance(l_sizes, int):
return {l:l_sizes for l in self.langs()}
self.__check_langs(l_sizes)
return l_sizes
def sampling_index(self, l_sizes: Union[int,dict], *prevs, shuffle=True):
l_sizes = self.__check_sizes(l_sizes)
return {l:lc.sampling_index(l_sizes[l], *prevs, shuffle=shuffle) for l,lc in self.llc.items()}
def uniform_sampling_index(self, l_sizes: Union[int, dict]):
l_sizes = self.__check_sizes(l_sizes)
return {l: lc.uniform_sampling_index(l_sizes[l]) for l,lc in self.llc.items()}
def uniform_sampling(self, l_sizes: Union[int, dict]):
l_sizes = self.__check_sizes(l_sizes)
return MultilingualLabelledCollection.fromLangDict(
{l: lc.uniform_sampling(l_sizes[l]) for l,lc in self.llc.items()}
)
def sampling(self, l_sizes: Union[int, dict], *prevs, shuffle=True):
l_sizes = self.__check_sizes(l_sizes)
return MultilingualLabelledCollection.fromLangDict(
{l: lc.sampling(l_sizes[l], *prevs, shuffle=shuffle) for l,lc in self.llc.items()}
)
def sampling_from_index(self, l_index:dict):
self.__check_langs(l_index)
return MultilingualLabelledCollection.fromLangDict(
{l: lc.sampling_from_index(l_index[l]) for l,lc in self.llc.items()}
)
def split_stratified(self, train_prop=0.6, random_state=None):
train, test = list(zip(*[self[l].split_stratified(train_prop, random_state) for l in self.langs()]))
return MultilingualLabelledCollection(self.langs(), train), MultilingualLabelledCollection(self.langs(), test)
def asLabelledCollection(self, return_langs=False):
lXy_list = [([l]*len(lc),*lc.Xy) for l, lc in self.llc.items()] # a list with (lang_i, Xi, yi)
ls,Xs,ys = list(zip(*lXy_list))
ls = np.concatenate(ls)
vertstack = vstack if issparse(Xs[0]) else np.vstack
Xs = vertstack(Xs)
ys = np.concatenate(ys)
lc = LabelledCollection(Xs, ys, classes_=self.classes_)
# return lc, ls if return_langs else lc
#
#
#
class Dataset:
def __init__(self, training: LabelledCollection, test: LabelledCollection, vocabulary: dict = None, name=''):