1
0
Fork 0

format fix

This commit is contained in:
Alejandro Moreo Fernandez 2021-11-09 15:44:57 +01:00
parent 238a30520c
commit 611d080ca6
5 changed files with 104 additions and 75 deletions

View File

@ -1,12 +1,5 @@
import pickle import pickle
import numpy as np
from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression
from tqdm import tqdm
import pandas as pd
import quapy as qp
from quapy.data import LabelledCollection
from quapy.method.aggregative import * from quapy.method.aggregative import *
import quapy.functional as F import quapy.functional as F
from data import * from data import *
@ -50,9 +43,11 @@ def gen_samples():
return gen_load_samples_T1(T1A_devvectors_path, nF, ground_truth_path=T1A_devprevalence_path, return_id=False) return gen_load_samples_T1(T1A_devvectors_path, nF, ground_truth_path=T1A_devprevalence_path, return_id=False)
for quantifier in [CC]: #, ACC, PCC, PACC, EMQ, HDy]: for quantifier in [EMQ]: # [CC, ACC, PCC, PACC, EMQ, HDy]:
#classifier = CalibratedClassifierCV(LogisticRegression(), n_jobs=-1) if quantifier == EMQ:
classifier = LogisticRegression() classifier = CalibratedClassifierCV(LogisticRegression(), n_jobs=-1)
else:
classifier = LogisticRegression()
model = quantifier(classifier) model = quantifier(classifier)
print(f'{model.__class__.__name__}: Model selection') print(f'{model.__class__.__name__}: Model selection')
model = qp.model_selection.GridSearchQ( model = qp.model_selection.GridSearchQ(

View File

@ -2,7 +2,6 @@ import argparse
import quapy as qp import quapy as qp
from data import ResultSubmission, evaluate_submission from data import ResultSubmission, evaluate_submission
import constants import constants
import os
""" """
LeQua2022 Official evaluation script LeQua2022 Official evaluation script
@ -20,9 +19,7 @@ def main(args):
print(f'MRAE: {mrae:.4f}') print(f'MRAE: {mrae:.4f}')
if args.output is not None: if args.output is not None:
outdir = os.path.dirname(args.output) qp.util.create_parent_dir(args.output)
if outdir:
os.makedirs(outdir, exist_ok=True)
with open(args.output, 'wt') as foo: with open(args.output, 'wt') as foo:
foo.write(f'MAE: {mae:.4f}\n') foo.write(f'MAE: {mae:.4f}\n')
foo.write(f'MRAE: {mrae:.4f}\n') foo.write(f'MRAE: {mrae:.4f}\n')

View File

@ -1,11 +1,11 @@
import argparse import argparse
import quapy as qp import quapy as qp
from data import ResultSubmission, evaluate_submission from data import ResultSubmission
import constants import constants
import os import os
import pickle import pickle
from tqdm import tqdm from tqdm import tqdm
from data import gen_load_samples_T1, load_category_map from data import gen_load_samples_T1
from glob import glob from glob import glob
import constants import constants
@ -22,21 +22,16 @@ def main(args):
f'dev samples ({constants.DEV_SAMPLES}) nor with the expected number of ' f'dev samples ({constants.DEV_SAMPLES}) nor with the expected number of '
f'test samples ({constants.TEST_SAMPLES}).') f'test samples ({constants.TEST_SAMPLES}).')
# _, categories = load_category_map(args.catmap)
# load pickled model # load pickled model
model = pickle.load(open(args.model, 'rb')) model = pickle.load(open(args.model, 'rb'))
# predictions # predictions
predictions = ResultSubmission() predictions = ResultSubmission()
for sampleid, sample in tqdm(gen_load_samples_T1(args.samples, args.nf), for sampleid, sample in tqdm(gen_load_samples_T1(args.samples, args.nf), desc='predicting', total=nsamples):
desc='predicting', total=nsamples):
predictions.add(sampleid, model.quantify(sample)) predictions.add(sampleid, model.quantify(sample))
# saving # saving
basedir = os.path.basename(args.output) qp.util.create_parent_dir(args.output)
if basedir:
os.makedirs(basedir, exist_ok=True)
predictions.dump(args.output) predictions.dump(args.output)

View File

@ -11,6 +11,46 @@ import inspect
class GridSearchQ(BaseQuantifier): class GridSearchQ(BaseQuantifier):
"""Grid Search optimization targeting a quantification-oriented metric.
Optimizes the hyperparameters of a quantification method, based on an evaluation method and on an evaluation
protocol for quantification.
:param model: the quantifier to optimize
:type model: BaseQuantifier
:param param_grid: a dictionary with keys the parameter names and values the list of values to explore
:param sample_size: the size of the samples to extract from the validation set (ignored if protocl='gen')
:param protocol: either 'app' for the artificial prevalence protocol, 'npp' for the natural prevalence
protocol, or 'gen' for using a custom sampling generator function
:param n_prevpoints: if specified, indicates the number of equally distant points to extract from the interval
[0,1] in order to define the prevalences of the samples; e.g., if n_prevpoints=5, then the prevalences for
each class will be explored in [0.00, 0.25, 0.50, 0.75, 1.00]. If not specified, then eval_budget is requested.
Ignored if protocol!='app'.
:param n_repetitions: the number of repetitions for each combination of prevalences. This parameter is ignored
for the protocol='app' if eval_budget is set and is lower than the number of combinations that would be
generated using the value assigned to n_prevpoints (for the current number of classes and n_repetitions).
Ignored for protocol='npp' and protocol='gen' (use eval_budget for setting a maximum number of samples in
those cases).
:param eval_budget: if specified, sets a ceil on the number of evaluations to perform for each hyper-parameter
combination. For example, if protocol='app', there are 3 classes, n_repetitions=1 and eval_budget=20, then
n_prevpoints will be set to 5, since this will generate 15 different prevalences, i.e., [0, 0, 1],
[0, 0.25, 0.75], [0, 0.5, 0.5] ... [1, 0, 0], and since setting it to 6 would generate more than
20. When protocol='gen', indicates the maximum number of samples to generate, but less samples will be
generated if the generator yields less samples.
:param error: an error function (callable) or a string indicating the name of an error function (valid ones
are those in qp.error.QUANTIFICATION_ERROR
:param refit: whether or not to refit the model on the whole labelled collection (training+validation) with
the best chosen hyperparameter combination. Ignored if protocol='gen'
:param val_split: either a LabelledCollection on which to test the performance of the different settings, or
a float in [0,1] indicating the proportion of labelled data to extract from the training set, or a callable
returning a generator function each time it is invoked (only for protocol='gen').
:param n_jobs: number of parallel jobs
:param random_seed: set the seed of the random generator to replicate experiments. Ignored if protocol='gen'.
:param timeout: establishes a timer (in seconds) for each of the hyperparameters configurations being tested.
Whenever a run takes longer than this timer, that configuration will be ignored. If all configurations end up
being ignored, a TimeoutError exception is raised. If -1 (default) then no time bound is set.
:param verbose: set to True to get information through the stdout
"""
def __init__(self, def __init__(self,
model: BaseQuantifier, model: BaseQuantifier,
@ -27,43 +67,7 @@ class GridSearchQ(BaseQuantifier):
random_seed=42, random_seed=42,
timeout=-1, timeout=-1,
verbose=False): verbose=False):
"""
Optimizes the hyperparameters of a quantification method, based on an evaluation method and on an evaluation
protocol for quantification.
:param model: the quantifier to optimize
:param param_grid: a dictionary with keys the parameter names and values the list of values to explore for
:param sample_size: the size of the samples to extract from the validation set (ignored if protocl='gen')
:param protocol: either 'app' for the artificial prevalence protocol, 'npp' for the natural prevalence
protocol, or 'gen' for using a custom sampling generator function
:param n_prevpoints: if specified, indicates the number of equally distant points to extract from the interval
[0,1] in order to define the prevalences of the samples; e.g., if n_prevpoints=5, then the prevalences for
each class will be explored in [0.00, 0.25, 0.50, 0.75, 1.00]. If not specified, then eval_budget is requested.
Ignored if protocol!='app'.
:param n_repetitions: the number of repetitions for each combination of prevalences. This parameter is ignored
for the protocol='app' if eval_budget is set and is lower than the number of combinations that would be
generated using the value assigned to n_prevpoints (for the current number of classes and n_repetitions).
Ignored for protocol='npp' and protocol='gen' (use eval_budget for setting a maximum number of samples in
those cases).
:param eval_budget: if specified, sets a ceil on the number of evaluations to perform for each hyper-parameter
combination. For example, if protocol='app', there are 3 classes, n_repetitions=1 and eval_budget=20, then
n_prevpoints will be set to 5, since this will generate 15 different prevalences, i.e., [0, 0, 1],
[0, 0.25, 0.75], [0, 0.5, 0.5] ... [1, 0, 0], and since setting it to 6 would generate more than
20. When protocol='gen', indicates the maximum number of samples to generate, but less samples will be
generated if the generator yields less samples.
:param error: an error function (callable) or a string indicating the name of an error function (valid ones
are those in qp.error.QUANTIFICATION_ERROR
:param refit: whether or not to refit the model on the whole labelled collection (training+validation) with
the best chosen hyperparameter combination. Ignored if protocol='gen'
:param val_split: either a LabelledCollection on which to test the performance of the different settings, or
a float in [0,1] indicating the proportion of labelled data to extract from the training set, or a callable
returning a generator function each time it is invoked (only for protocol='gen').
:param n_jobs: number of parallel jobs
:param random_seed: set the seed of the random generator to replicate experiments. Ignored if protocol='gen'.
:param timeout: establishes a timer (in seconds) for each of the hyperparameters configurations being tested.
Whenever a run takes longer than this timer, that configuration will be ignored. If all configurations end up
being ignored, a TimeoutError exception is raised. If -1 (default) then no time bound is set.
:param verbose: set to True to get information through the stdout
"""
self.model = model self.model = model
self.param_grid = param_grid self.param_grid = param_grid
self.sample_size = sample_size self.sample_size = sample_size
@ -90,7 +94,7 @@ class GridSearchQ(BaseQuantifier):
if self.n_prevpoints != 1: if self.n_prevpoints != 1:
print('[warning] n_prevpoints has been set and will be ignored for the selected protocol') print('[warning] n_prevpoints has been set and will be ignored for the selected protocol')
def sout(self, msg): def _sout(self, msg):
if self.verbose: if self.verbose:
print(f'[{self.__class__.__name__}]: {msg}') print(f'[{self.__class__.__name__}]: {msg}')
@ -145,10 +149,11 @@ class GridSearchQ(BaseQuantifier):
raise ValueError('unknown protocol') raise ValueError('unknown protocol')
def fit(self, training: LabelledCollection, val_split: Union[LabelledCollection, float, Callable] = None): def fit(self, training: LabelledCollection, val_split: Union[LabelledCollection, float, Callable] = None):
""" """ Learning routine. Fits methods with all combinations of hyperparameters and selects the one minimizing
the error metric.
:param training: the training set on which to optimize the hyperparameters :param training: the training set on which to optimize the hyperparameters
:param val_split: either a LabelledCollection on which to test the performance of the different settings, or :param val_split: either a LabelledCollection on which to test the performance of the different settings, or
a float in [0,1] indicating the proportion of labelled data to extract from the training set a float in [0,1] indicating the proportion of labelled data to extract from the training set
""" """
if val_split is None: if val_split is None:
val_split = self.val_split val_split = self.val_split
@ -164,12 +169,12 @@ class GridSearchQ(BaseQuantifier):
if self.timeout > 0: if self.timeout > 0:
def handler(signum, frame): def handler(signum, frame):
self.sout('timeout reached') self._sout('timeout reached')
raise TimeoutError() raise TimeoutError()
signal.signal(signal.SIGALRM, handler) signal.signal(signal.SIGALRM, handler)
self.sout(f'starting optimization with n_jobs={n_jobs}') self._sout(f'starting optimization with n_jobs={n_jobs}')
self.param_scores_ = {} self.param_scores_ = {}
self.best_score_ = None self.best_score_ = None
some_timeouts = False some_timeouts = False
@ -185,7 +190,7 @@ class GridSearchQ(BaseQuantifier):
model.fit(training) model.fit(training)
true_prevalences, estim_prevalences = self.__generate_predictions(model, val_split) true_prevalences, estim_prevalences = self.__generate_predictions(model, val_split)
score = self.error(true_prevalences, estim_prevalences) score = self.error(true_prevalences, estim_prevalences)
self.sout(f'checking hyperparams={params} got {self.error.__name__} score {score:.5f}') self._sout(f'checking hyperparams={params} got {self.error.__name__} score {score:.5f}')
if self.best_score_ is None or score < self.best_score_: if self.best_score_ is None or score < self.best_score_:
self.best_score_ = score self.best_score_ = score
self.best_params_ = params self.best_params_ = params
@ -201,15 +206,19 @@ class GridSearchQ(BaseQuantifier):
if self.best_score_ is None and some_timeouts: if self.best_score_ is None and some_timeouts:
raise TimeoutError('all jobs took more than the timeout time to end') raise TimeoutError('all jobs took more than the timeout time to end')
self.sout(f'optimization finished: best params {self.best_params_} (score={self.best_score_:.5f})') self._sout(f'optimization finished: best params {self.best_params_} (score={self.best_score_:.5f})')
if self.refit: if self.refit:
self.sout(f'refitting on the whole development set') self._sout(f'refitting on the whole development set')
self.best_model_.fit(training + val_split) self.best_model_.fit(training + val_split)
return self return self
def quantify(self, instances): def quantify(self, instances):
"""Estimate class prevalence values
:param instances: sample contanining the instances
"""
assert hasattr(self, 'best_model_'), 'quantify called before fit' assert hasattr(self, 'best_model_'), 'quantify called before fit'
return self.best_model().quantify(instances) return self.best_model().quantify(instances)
@ -218,9 +227,18 @@ class GridSearchQ(BaseQuantifier):
return self.best_model().classes_ return self.best_model().classes_
def set_params(self, **parameters): def set_params(self, **parameters):
"""Sets the hyper-parameters to explore.
:param parameters: a dictionary with keys the parameter names and values the list of values to explore
"""
self.param_grid = parameters self.param_grid = parameters
def get_params(self, deep=True): def get_params(self, deep=True):
"""Returns the dictionary of hyper-parameters to explore (`param_grid`)
:param deep: Unused
:return: the dictionary `param_grid`
"""
return self.param_grid return self.param_grid
def best_model(self): def best_model(self):

View File

@ -11,13 +11,12 @@ import numpy as np
from joblib import Parallel, delayed from joblib import Parallel, delayed
def get_parallel_slices(n_tasks, n_jobs=-1): def _get_parallel_slices(n_tasks, n_jobs=-1):
if n_jobs == -1: if n_jobs == -1:
n_jobs = multiprocessing.cpu_count() n_jobs = multiprocessing.cpu_count()
batch = int(n_tasks / n_jobs) batch = int(n_tasks / n_jobs)
remainder = n_tasks % n_jobs remainder = n_tasks % n_jobs
return [slice(job * batch, (job + 1) * batch + (remainder if job == n_jobs - 1 else 0)) for job in return [slice(job * batch, (job + 1) * batch + (remainder if job == n_jobs - 1 else 0)) for job in range(n_jobs)]
range(n_jobs)]
def map_parallel(func, args, n_jobs): def map_parallel(func, args, n_jobs):
@ -26,7 +25,7 @@ def map_parallel(func, args, n_jobs):
func is applied in two parallel processes to args[0:50] and to args[50:99] func is applied in two parallel processes to args[0:50] and to args[50:99]
""" """
args = np.asarray(args) args = np.asarray(args)
slices = get_parallel_slices(len(args), n_jobs) slices = _get_parallel_slices(len(args), n_jobs)
results = Parallel(n_jobs=n_jobs)( results = Parallel(n_jobs=n_jobs)(
delayed(func)(args[slice_i]) for slice_i in slices delayed(func)(args[slice_i]) for slice_i in slices
) )
@ -37,7 +36,7 @@ def parallel(func, args, n_jobs):
""" """
A wrapper of multiprocessing: A wrapper of multiprocessing:
Parallel(n_jobs=n_jobs)( Parallel(n_jobs=n_jobs)(
delayed(func)(args_i) for args_i in args delayed(func)(args_i) for args_i in args
) )
that takes the quapy.environ variable as input silently that takes the quapy.environ variable as input silently
""" """
@ -49,9 +48,14 @@ def parallel(func, args, n_jobs):
) )
@contextlib.contextmanager @contextlib.contextmanager
def temp_seed(seed): def temp_seed(seed):
"""
Can be used in a "with" context to set a temporal seed without modifying the outer numpy's current state. E.g.:
with temp_seed(random_seed):
# do any computation depending on np.random functionality
:param seed: the seed to set within the "with" context
"""
state = np.random.get_state() state = np.random.get_state()
np.random.seed(seed) np.random.seed(seed)
try: try:
@ -88,10 +92,30 @@ def get_quapy_home():
def create_parent_dir(path): def create_parent_dir(path):
os.makedirs(Path(path).parent, exist_ok=True) parentdir = Path(path).parent
if parentdir:
os.makedirs(parentdir, exist_ok=True)
def save_text_file(path, text):
create_parent_dir(path)
with open(text, 'wt') as fout:
fout.write(text)
def pickled_resource(pickle_path:str, generation_func:callable, *args): def pickled_resource(pickle_path:str, generation_func:callable, *args):
"""
Allows for fast reuse of resources that are generated only once by calling generation_func(*args). The next times
this function is invoked, it loads the pickled resource. Example:
def some_array(n):
return np.random.rand(n)
pickled_resource('./my_array.pkl', some_array, 10) # the resource does not exist: it is created by some_array(10)
pickled_resource('./my_array.pkl', some_array, 10) # the resource exists: it is loaded from './my_array.pkl'
:param pickle_path: the path where to save (first time) and load (next times) the resource
:param generation_func: the function that generates the resource, in case it does not exist in pickle_path
:param args: any arg that generation_func uses for generating the resources
:return: the resource
"""
if pickle_path is None: if pickle_path is None:
return generation_func(*args) return generation_func(*args)
else: else: