1
0
Fork 0

some sketches for lequa2022 file reading

This commit is contained in:
Alejandro Moreo Fernandez 2021-10-21 19:54:18 +02:00
parent 65b2c2ce74
commit 646d21873f
3 changed files with 62 additions and 8 deletions

View File

@ -5,3 +5,4 @@
5. plots
6. estoy leyendo los samples en orden, y no hace falta. Sería mejor una función genérica que lee todos los ejemplos y
que de todos modos genera un output con el mismo nombre del file
7. Make ResultSubmission class abstract, and create 4 instances thus forcing the field task_name to be set correctly

View File

@ -11,17 +11,71 @@ import sklearn
# return documents, labels
def load_multiclass_raw_document(path):
return qp.data.from_text(path, verbose=0, class2int=False)
# def load_multiclass_raw_document(path):
# return qp.data.from_text(path, verbose=0, class2int=False)
def load_binary_vectors(path, nF=None):
return sklearn.datasets.load_svmlight_file(path, n_features=nF)
if __name__ == '__main__':
X, y = load_binary_vectors('./data/T1A/public/training_vectors.txt')
print(X.shape)
print(y)
def gen_load_samples_T1A(path_dir:str, ground_truth_path:str = None):
# for ... : yield
pass
def gen_load_samples_T1B(path_dir:str, ground_truth_path:str = None):
# for ... : yield
pass
def gen_load_samples_T2A(path_dir:str, ground_truth_path:str = None):
# for ... : yield
pass
def gen_load_samples_T2B(path_dir:str, ground_truth_path:str = None):
# for ... : yield
pass
class ResultSubmission:
def __init__(self, team_name, run_name, task_name):
assert isinstance(team_name, str) and team_name, \
f'invalid value encountered for team_name'
assert isinstance(run_name, str) and run_name, \
f'invalid value encountered for run_name'
assert isinstance(task_name, str) and task_name in {'T1A', 'T1B', 'T2A', 'T2B'}, \
f'invalid value encountered for task_name; valid values are T1A, T1B, T2A, and T2B'
self.team_name = team_name
self.run_name = run_name
self.task_name = task_name
self.data = {}
def add(self, sample_name:str, prevalence_values:np.ndarray):
# assert the result is a valid sample_name (not repeated)
pass
def __len__(self):
return len(self.data)
@classmethod
def load(cls, path:str)-> 'ResultSubmission':
pass
def dump(self, path:str):
# assert all samples are covered (check for test and dev accordingly)
pass
def get(self, sample_name:str):
pass
def evaluate_submission(ground_truth_prevs: ResultSubmission, submission_prevs: ResultSubmission):
pass

View File

@ -1,7 +1,6 @@
import pickle
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from tqdm import tqdm
import pandas as pd