1
0
Fork 0

adding natural sampling protocol

This commit is contained in:
Alejandro Moreo Fernandez 2021-05-27 16:53:58 +02:00
parent 3d544135f1
commit 731b54c5ba
1 changed files with 95 additions and 11 deletions

View File

@ -12,6 +12,7 @@ import quapy.functional as F
import pandas as pd
def artificial_sampling_prediction(
model: BaseQuantifier,
test: LabelledCollection,
@ -21,8 +22,7 @@ def artificial_sampling_prediction(
eval_budget: int = None,
n_jobs=1,
random_seed=42,
verbose=True
):
verbose=False):
"""
Performs the predictions for all samples generated according to the artificial sampling protocol.
:param model: the model in charge of generating the class prevalence estimations
@ -48,6 +48,45 @@ def artificial_sampling_prediction(
with temp_seed(random_seed):
indexes = list(test.artificial_sampling_index_generator(sample_size, n_prevpoints, n_repetitions))
return _predict_from_indexes(indexes, model, test, n_jobs, verbose)
def natural_sampling_prediction(
model: BaseQuantifier,
test: LabelledCollection,
sample_size,
n_repetitions=1,
n_jobs=1,
random_seed=42,
verbose=False):
"""
Performs the predictions for all samples generated according to the artificial sampling protocol.
:param model: the model in charge of generating the class prevalence estimations
:param test: the test set on which to perform arificial sampling
:param sample_size: the size of the samples
:param n_repetitions: the number of repetitions for each prevalence
:param n_jobs: number of jobs to be run in parallel
:param random_seed: allows to replicate the samplings. The seed is local to the method and does not affect
any other random process.
:param verbose: if True, shows a progress bar
:return: two ndarrays of shape (m,n) with m the number of samples (n_repetitions) and n the
number of classes. The first one contains the true prevalences for the samples generated while the second one
contains the the prevalence estimations
"""
with temp_seed(random_seed):
indexes = list(test.natural_sampling_index_generator(sample_size, n_repetitions))
return _predict_from_indexes(indexes, model, test, n_jobs, verbose)
def _predict_from_indexes(
indexes,
model: BaseQuantifier,
test: LabelledCollection,
n_jobs=1,
verbose=False):
if model.aggregative: #isinstance(model, qp.method.aggregative.AggregativeQuantifier):
# print('\tinstance of aggregative-quantifier')
quantification_func = model.aggregate
@ -88,19 +127,43 @@ def artificial_sampling_report(
n_jobs=1,
random_seed=42,
error_metrics:Iterable[Union[str,Callable]]='mae',
verbose=True):
verbose=False):
true_prevs, estim_prevs = artificial_sampling_prediction(
model, test, sample_size, n_prevpoints, n_repetitions, eval_budget, n_jobs, random_seed, verbose
)
return __sampling_report(true_prevs, estim_prevs, error_metrics)
def natural_sampling_report(
model: BaseQuantifier,
test: LabelledCollection,
sample_size,
n_repetitions=1,
n_jobs=1,
random_seed=42,
error_metrics:Iterable[Union[str,Callable]]='mae',
verbose=False):
true_prevs, estim_prevs = natural_sampling_prediction(
model, test, sample_size, n_repetitions, n_jobs, random_seed, verbose
)
return __sampling_report(true_prevs, estim_prevs, error_metrics)
def __sampling_report(
true_prevs,
estim_prevs,
error_metrics: Iterable[Union[str, Callable]] = 'mae'):
if isinstance(error_metrics, str):
error_metrics=[error_metrics]
error_metrics = [error_metrics]
error_names = [e if isinstance(e, str) else e.__name__ for e in error_metrics]
error_funcs = [qp.error.from_name(e) if isinstance(e, str) else e for e in error_metrics]
assert all(hasattr(e, '__call__') for e in error_funcs), 'invalid error functions'
df = pd.DataFrame(columns=['true-prev', 'estim-prev']+error_names)
true_prevs, estim_prevs = artificial_sampling_prediction(
model, test, sample_size, n_prevpoints, n_repetitions, eval_budget, n_jobs, random_seed, verbose
)
df = pd.DataFrame(columns=['true-prev', 'estim-prev'] + error_names)
for true_prev, estim_prev in zip(true_prevs, estim_prevs):
series = {'true-prev': true_prev, 'estim-prev': estim_prev}
for error_name, error_metric in zip(error_names, error_funcs):
@ -110,7 +173,6 @@ def artificial_sampling_report(
return df
def artificial_sampling_eval(
model: BaseQuantifier,
test: LabelledCollection,
@ -121,7 +183,7 @@ def artificial_sampling_eval(
n_jobs=1,
random_seed=42,
error_metric:Union[str,Callable]='mae',
verbose=True):
verbose=False):
if isinstance(error_metric, str):
error_metric = qp.error.from_name(error_metric)
@ -135,6 +197,28 @@ def artificial_sampling_eval(
return error_metric(true_prevs, estim_prevs)
def natural_sampling_eval(
model: BaseQuantifier,
test: LabelledCollection,
sample_size,
n_repetitions=1,
n_jobs=1,
random_seed=42,
error_metric:Union[str,Callable]='mae',
verbose=False):
if isinstance(error_metric, str):
error_metric = qp.error.from_name(error_metric)
assert hasattr(error_metric, '__call__'), 'invalid error function'
true_prevs, estim_prevs = natural_sampling_prediction(
model, test, sample_size, n_repetitions, n_jobs, random_seed, verbose
)
return error_metric(true_prevs, estim_prevs)
def evaluate(model: BaseQuantifier, test_samples:Iterable[LabelledCollection], err:Union[str, Callable], n_jobs:int=-1):
if isinstance(err, str):
err = qp.error.from_name(err)
@ -149,7 +233,7 @@ def _delayed_eval(args):
return error(prev_true, prev_estim)
def _check_num_evals(n_classes, n_prevpoints=None, eval_budget=None, n_repetitions=1, verbose=True):
def _check_num_evals(n_classes, n_prevpoints=None, eval_budget=None, n_repetitions=1, verbose=False):
if n_prevpoints is None and eval_budget is None:
raise ValueError('either n_prevpoints or eval_budget has to be specified')
elif n_prevpoints is None: