forked from moreo/QuaPy
custom protocol example added
This commit is contained in:
parent
a8230827e2
commit
7659e53d43
|
@ -0,0 +1,93 @@
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
|
||||||
|
import quapy as qp
|
||||||
|
from quapy.method.aggregative import PACC
|
||||||
|
from quapy.data import LabelledCollection
|
||||||
|
from quapy.protocol import AbstractStochasticSeededProtocol
|
||||||
|
import quapy.functional as F
|
||||||
|
|
||||||
|
"""
|
||||||
|
In this example, we create a custom protocol.
|
||||||
|
The protocol generates samples of a Gaussian mixture model with random mixture parameter (the sample prevalence).
|
||||||
|
Datapoints are univariate and we consider 2 classes only.
|
||||||
|
"""
|
||||||
|
class GaussianMixProtocol(AbstractStochasticSeededProtocol):
|
||||||
|
# We need to extend AbstractStochasticSeededProtocol if we want the samples to be replicable
|
||||||
|
|
||||||
|
def __init__(self, mu_1:float, std_1:float, mu_2:float, std_2:float, num_samples, sample_size, random_state=0):
|
||||||
|
super(GaussianMixProtocol, self).__init__(random_state) # this sets the random state
|
||||||
|
self.mu_1 = mu_1
|
||||||
|
self.std_1 = std_1
|
||||||
|
self.mu_2 = mu_2
|
||||||
|
self.std_2 = std_2
|
||||||
|
self.num_samples = num_samples
|
||||||
|
self.sample_size = sample_size
|
||||||
|
|
||||||
|
def samples_parameters(self):
|
||||||
|
# This function is inherited and has to be overriden.
|
||||||
|
# This function should return all the necessary parameters for producing the samples.
|
||||||
|
# In this case, we consider returning a vector of seeds (one for each sample) and a vector of
|
||||||
|
# randomly sampled prevalence values.
|
||||||
|
# This function will be invoked within a context that sets the seed, so it will always return the
|
||||||
|
# same parameters. In case you want different outcomes, then simply set random_state=None.
|
||||||
|
rand_offset = np.random.randint(1000)
|
||||||
|
sample_seeds = np.random.permutation(self.num_samples*2) + rand_offset
|
||||||
|
random_prevs = np.random.rand(self.num_samples)
|
||||||
|
params = np.hstack([sample_seeds.reshape(-1,2), random_prevs.reshape(-1,1)])
|
||||||
|
# each row in params contains two seeds (for generating the negatives and the positives, respectively) and
|
||||||
|
# the prevalence vector
|
||||||
|
return params
|
||||||
|
|
||||||
|
def sample(self, params):
|
||||||
|
# the params are two seeds and the positive prevalence of the sample
|
||||||
|
seed0, seed1, pos_prev = params
|
||||||
|
num_positives = int(pos_prev * self.sample_size)
|
||||||
|
num_negatives = self.sample_size - num_positives
|
||||||
|
with qp.util.temp_seed(int(seed0)):
|
||||||
|
Xneg = np.random.normal(loc=self.mu_1, scale=self.std_1, size=num_negatives)
|
||||||
|
with qp.util.temp_seed(int(seed1)):
|
||||||
|
Xpos = np.random.normal(loc=self.mu_2, scale=self.std_2, size=num_positives)
|
||||||
|
X = np.concatenate((Xneg,Xpos))
|
||||||
|
np.random.shuffle(X)
|
||||||
|
X = X.reshape(-1,1)
|
||||||
|
prev = F.as_binary_prevalence(pos_prev)
|
||||||
|
return X, prev
|
||||||
|
|
||||||
|
def total(self):
|
||||||
|
# overriding this function will allow some methods display a meaningful progress bar
|
||||||
|
return self.num_samples
|
||||||
|
|
||||||
|
|
||||||
|
mu_1, std_1 = 0, 1
|
||||||
|
mu_2, std_2 = 1, 1
|
||||||
|
|
||||||
|
gm = GaussianMixProtocol(mu_1=mu_1, std_1=std_1, mu_2=mu_2, std_2=std_2, num_samples=10, sample_size=50)
|
||||||
|
|
||||||
|
# let's see if the samples are replicated
|
||||||
|
for i, (X, prev) in enumerate(gm()):
|
||||||
|
if i>4: break
|
||||||
|
print(f'sample-{i}: {F.strprev(prev)}, some covariates={X[:5].flatten()}...')
|
||||||
|
|
||||||
|
print()
|
||||||
|
for i, (X, prev) in enumerate(gm()):
|
||||||
|
if i > 4: break
|
||||||
|
print(f'sample-{i}: {F.strprev(prev)}, some covariates={X[:5].flatten()}...')
|
||||||
|
|
||||||
|
# let's generate some training data
|
||||||
|
# The samples are replicable, but by setting a temp seed we achieve repicable training as well
|
||||||
|
with qp.util.temp_seed(0):
|
||||||
|
Xneg = np.random.normal(loc=mu_1, scale=std_1, size=100)
|
||||||
|
Xpos = np.random.normal(loc=mu_2, scale=std_2, size=100)
|
||||||
|
X = np.concatenate([Xneg, Xpos]).reshape(-1,1)
|
||||||
|
y = [0]*100 + [1]*100
|
||||||
|
training = LabelledCollection(X, y)
|
||||||
|
|
||||||
|
pacc = PACC(LogisticRegression())
|
||||||
|
pacc.fit(training)
|
||||||
|
|
||||||
|
|
||||||
|
mae = qp.evaluation.evaluate(pacc, protocol=gm, error_metric='mae', verbose=True)
|
||||||
|
print(f'PACC MAE={mae:.5f}')
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue