forked from moreo/QuaPy
bugfix when the number of positive elemnts for one of the classes is 0
This commit is contained in:
parent
cfdf2e35bd
commit
8ee5e499f5
|
@ -23,109 +23,49 @@ from quapy.method.base import BaseQuantifier, BinaryQuantifier
|
|||
class AggregativeQuantifier(BaseQuantifier):
|
||||
"""
|
||||
Abstract class for quantification methods that base their estimations on the aggregation of classification
|
||||
results. Aggregative Quantifiers thus implement a :meth:`classify` method and maintain a :attr:`learner` attribute.
|
||||
Subclasses of this abstract class must implement the method :meth:`aggregate` which computes the aggregation
|
||||
of label predictions. The method :meth:`quantify` comes with a default implementation based on
|
||||
:meth:`classify` and :meth:`aggregate`.
|
||||
results. Aggregative Quantifiers thus implement a _classify_ method and maintain a _learner_ attribute.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def fit(self, data: LabelledCollection, fit_learner=True):
|
||||
"""
|
||||
Trains the aggregative quantifier
|
||||
|
||||
:param data: a :class:`quapy.data.base.LabelledCollection` consisting of the training data
|
||||
:param fit_learner: whether or not to train the learner (default is True). Set to False if the
|
||||
learner has been trained outside the quantifier.
|
||||
:return: self
|
||||
"""
|
||||
...
|
||||
def fit(self, data: LabelledCollection, fit_learner=True): ...
|
||||
|
||||
@property
|
||||
def learner(self):
|
||||
"""
|
||||
Gives access to the classifier
|
||||
|
||||
:return: the classifier (typically an sklearn's Estimator)
|
||||
"""
|
||||
return self.learner_
|
||||
|
||||
@learner.setter
|
||||
def learner(self, classifier):
|
||||
"""
|
||||
Setter for the classifier
|
||||
def learner(self, value):
|
||||
self.learner_ = value
|
||||
|
||||
:param classifier: the classifier
|
||||
"""
|
||||
self.learner_ = classifier
|
||||
def preclassify(self, instances):
|
||||
return self.classify(instances)
|
||||
|
||||
def classify(self, instances):
|
||||
"""
|
||||
Provides the label predictions for the given instances.
|
||||
|
||||
:param instances: array-like
|
||||
:return: np.ndarray of shape `(n_instances,)` with label predictions
|
||||
"""
|
||||
return self.learner.predict(instances)
|
||||
|
||||
def quantify(self, instances):
|
||||
"""
|
||||
Generate class prevalence estimates for the sample's instances by aggregating the label predictions generated
|
||||
by the classifier.
|
||||
|
||||
:param instances: array-like
|
||||
:return: `np.ndarray` of shape `(self.n_classes_,)` with class prevalence estimates.
|
||||
"""
|
||||
classif_predictions = self.classify(instances)
|
||||
return self.aggregate(classif_predictions)
|
||||
|
||||
@abstractmethod
|
||||
def aggregate(self, classif_predictions: np.ndarray):
|
||||
"""
|
||||
Implements the aggregation of label predictions.
|
||||
|
||||
:param classif_predictions: `np.ndarray` of label predictions
|
||||
:return: `np.ndarray` of shape `(self.n_classes_,)` with class prevalence estimates.
|
||||
"""
|
||||
...
|
||||
def aggregate(self, classif_predictions: np.ndarray): ...
|
||||
|
||||
def get_params(self, deep=True):
|
||||
"""
|
||||
Return the current parameters of the quantifier.
|
||||
|
||||
:param deep: for compatibility with sklearn
|
||||
:return: a dictionary of param-value pairs
|
||||
"""
|
||||
|
||||
return self.learner.get_params()
|
||||
|
||||
def set_params(self, **parameters):
|
||||
"""
|
||||
Set the parameters of the quantifier.
|
||||
|
||||
:param parameters: dictionary of param-value pairs
|
||||
"""
|
||||
|
||||
self.learner.set_params(**parameters)
|
||||
|
||||
@property
|
||||
def classes_(self):
|
||||
"""
|
||||
Class labels, in the same order in which class prevalence values are to be computed.
|
||||
This default implementation actually returns the class labels of the learner.
|
||||
def n_classes(self):
|
||||
return len(self.classes_)
|
||||
|
||||
:return: array-like
|
||||
"""
|
||||
@property
|
||||
def classes_(self):
|
||||
return self.learner.classes_
|
||||
|
||||
@property
|
||||
def aggregative(self):
|
||||
"""
|
||||
Returns True, indicating the quantifier is of type aggregative.
|
||||
|
||||
:return: True
|
||||
"""
|
||||
|
||||
return True
|
||||
|
||||
|
||||
|
@ -137,6 +77,9 @@ class AggregativeProbabilisticQuantifier(AggregativeQuantifier):
|
|||
probabilities.
|
||||
"""
|
||||
|
||||
def preclassify(self, instances):
|
||||
return self.predict_proba(instances)
|
||||
|
||||
def posterior_probabilities(self, instances):
|
||||
return self.learner.predict_proba(instances)
|
||||
|
||||
|
@ -159,24 +102,23 @@ class AggregativeProbabilisticQuantifier(AggregativeQuantifier):
|
|||
|
||||
# Helper
|
||||
# ------------------------------------
|
||||
def _training_helper(learner,
|
||||
data: LabelledCollection,
|
||||
fit_learner: bool = True,
|
||||
ensure_probabilistic=False,
|
||||
val_split: Union[LabelledCollection, float] = None):
|
||||
def training_helper(learner,
|
||||
data: LabelledCollection,
|
||||
fit_learner: bool = True,
|
||||
ensure_probabilistic=False,
|
||||
val_split: Union[LabelledCollection, float] = None):
|
||||
"""
|
||||
Training procedure common to all Aggregative Quantifiers.
|
||||
|
||||
:param learner: the learner to be fit
|
||||
:param data: the data on which to fit the learner. If requested, the data will be split before fitting the learner.
|
||||
:param fit_learner: whether or not to fit the learner (if False, then bypasses any action)
|
||||
:param ensure_probabilistic: if True, guarantees that the resulting classifier implements predict_proba (if the
|
||||
learner is not probabilistic, then a CalibratedCV instance of it is trained)
|
||||
learner is not probabilistic, then a CalibratedCV instance of it is trained)
|
||||
:param val_split: if specified as a float, indicates the proportion of training instances that will define the
|
||||
validation split (e.g., 0.3 for using 30% of the training set as validation data); if specified as a
|
||||
LabelledCollection, represents the validation split itself
|
||||
validation split (e.g., 0.3 for using 30% of the training set as validation data); if specified as a
|
||||
LabelledCollection, represents the validation split itself
|
||||
:return: the learner trained on the training set, and the unused data (a _LabelledCollection_ if train_val_split>0
|
||||
or None otherwise) to be used as a validation set for any subsequent parameter fitting
|
||||
or None otherwise) to be used as a validation set for any subsequent parameter fitting
|
||||
"""
|
||||
if fit_learner:
|
||||
if ensure_probabilistic:
|
||||
|
@ -218,10 +160,8 @@ def _training_helper(learner,
|
|||
# ------------------------------------
|
||||
class CC(AggregativeQuantifier):
|
||||
"""
|
||||
The most basic Quantification method. One that simply classifies all instances and counts how many have been
|
||||
attributed to each of the classes in order to compute class prevalence estimates.
|
||||
|
||||
:param learner: a sklearn's Estimator that generates a classifier
|
||||
The most basic Quantification method. One that simply classifies all instances and countes how many have been
|
||||
attributed each of the classes in order to compute class prevalence estimates.
|
||||
"""
|
||||
|
||||
def __init__(self, learner: BaseEstimator):
|
||||
|
@ -229,40 +169,19 @@ class CC(AggregativeQuantifier):
|
|||
|
||||
def fit(self, data: LabelledCollection, fit_learner=True):
|
||||
"""
|
||||
Trains the Classify & Count method unless `fit_learner` is False, in which case, the classifier is assumed to
|
||||
be already fit and there is nothing else to do.
|
||||
|
||||
:param data: a :class:`quapy.data.base.LabelledCollection` consisting of the training data
|
||||
Trains the Classify & Count method unless _fit_learner_ is False, in which case it is assumed to be already fit.
|
||||
:param data: training data
|
||||
:param fit_learner: if False, the classifier is assumed to be fit
|
||||
:return: self
|
||||
"""
|
||||
self.learner, _ = _training_helper(self.learner, data, fit_learner)
|
||||
self.learner, _ = training_helper(self.learner, data, fit_learner)
|
||||
return self
|
||||
|
||||
def aggregate(self, classif_predictions: np.ndarray):
|
||||
"""
|
||||
Computes class prevalence estimates by counting the prevalence of each of the predicted labels.
|
||||
|
||||
:param classif_predictions: array-like with label predictions
|
||||
:return: `np.ndarray` of shape `(self.n_classes_,)` with class prevalence estimates.
|
||||
"""
|
||||
def aggregate(self, classif_predictions):
|
||||
return F.prevalence_from_labels(classif_predictions, self.classes_)
|
||||
|
||||
|
||||
class ACC(AggregativeQuantifier):
|
||||
"""
|
||||
`Adjusted Classify & Count <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_,
|
||||
the "adjusted" variant of :class:`CC`, that corrects the predictions of CC
|
||||
according to the `misclassification rates`.
|
||||
|
||||
:param learner: a sklearn's Estimator that generates a classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||||
misclassification rates are to be estimated.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
"""
|
||||
|
||||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||||
self.learner = learner
|
||||
|
@ -270,14 +189,13 @@ class ACC(AggregativeQuantifier):
|
|||
|
||||
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None):
|
||||
"""
|
||||
Trains a ACC quantifier.
|
||||
|
||||
Trains a ACC quantifier
|
||||
:param data: the training set
|
||||
:param fit_learner: set to False to bypass the training (the learner is assumed to be already fit)
|
||||
:param val_split: either a float in (0,1) indicating the proportion of training instances to use for
|
||||
validation (e.g., 0.3 for using 30% of the training set as validation data), or a LabelledCollection
|
||||
indicating the validation set itself, or an int indicating the number `k` of folds to be used in `k`-fold
|
||||
cross validation to estimate the parameters
|
||||
validation (e.g., 0.3 for using 30% of the training set as validation data), or a LabelledCollection
|
||||
indicating the validation set itself, or an int indicating the number k of folds to be used in kFCV
|
||||
to estimate the parameters
|
||||
:return: self
|
||||
"""
|
||||
if val_split is None:
|
||||
|
@ -293,7 +211,7 @@ class ACC(AggregativeQuantifier):
|
|||
pbar.set_description(f'{self.__class__.__name__} fitting fold {k}')
|
||||
training = data.sampling_from_index(training_idx)
|
||||
validation = data.sampling_from_index(validation_idx)
|
||||
learner, val_data = _training_helper(self.learner, training, fit_learner, val_split=validation)
|
||||
learner, val_data = training_helper(self.learner, training, fit_learner, val_split=validation)
|
||||
y_.append(learner.predict(val_data.instances))
|
||||
y.append(val_data.labels)
|
||||
|
||||
|
@ -302,22 +220,35 @@ class ACC(AggregativeQuantifier):
|
|||
class_count = data.counts()
|
||||
|
||||
# fit the learner on all data
|
||||
self.learner, _ = _training_helper(self.learner, data, fit_learner, val_split=None)
|
||||
self.learner, _ = training_helper(self.learner, data, fit_learner, val_split=None)
|
||||
|
||||
else:
|
||||
self.learner, val_data = _training_helper(self.learner, data, fit_learner, val_split=val_split)
|
||||
self.learner, val_data = training_helper(self.learner, data, fit_learner, val_split=val_split)
|
||||
y_ = self.learner.predict(val_data.instances)
|
||||
y = val_data.labels
|
||||
class_count = val_data.counts()
|
||||
|
||||
self.cc = CC(self.learner)
|
||||
|
||||
# estimate the matrix with entry (i,j) being the estimate of P(yi|yj), that is, the probability that a
|
||||
# document that belongs to yj ends up being classified as belonging to yi
|
||||
self.Pte_cond_estim_ = confusion_matrix(y, y_).T / class_count
|
||||
self.Pte_cond_estim_ = self.getPteCondEstim(data.classes_, y, y_)
|
||||
|
||||
return self
|
||||
|
||||
@classmethod
|
||||
def getPteCondEstim(cls, classes, y, y_):
|
||||
# estimate the matrix with entry (i,j) being the estimate of P(yi|yj), that is, the probability that a
|
||||
# document that belongs to yj ends up being classified as belonging to yi
|
||||
conf = confusion_matrix(y, y_, labels=classes).T
|
||||
conf = conf.astype(np.float)
|
||||
class_counts = conf.sum(axis=0)
|
||||
for i, _ in enumerate(classes):
|
||||
if class_counts[i] == 0:
|
||||
conf[i, i] = 1
|
||||
else:
|
||||
conf[:, i] /= class_counts[i]
|
||||
return conf
|
||||
|
||||
def classify(self, data):
|
||||
return self.cc.classify(data)
|
||||
|
||||
|
@ -327,15 +258,7 @@ class ACC(AggregativeQuantifier):
|
|||
|
||||
@classmethod
|
||||
def solve_adjustment(cls, PteCondEstim, prevs_estim):
|
||||
"""
|
||||
Solves the system linear system :math:`Ax = B` with :math:`A` = `PteCondEstim` and :math:`B` = `prevs_estim`
|
||||
|
||||
:param PteCondEstim: a `np.ndarray` of shape `(n_classes,n_classes,)` with entry `(i,j)` being the estimate
|
||||
of :math:`P(y_i|y_j)`, that is, the probability that an instance that belongs to :math:`y_j` ends up being
|
||||
classified as belonging to :math:`y_i`
|
||||
:param prevs_estim: a `np.ndarray` of shape `(n_classes,)` with the class prevalence estimates
|
||||
:return: an adjusted `np.ndarray` of shape `(n_classes,)` with the corrected class prevalence estimates
|
||||
"""
|
||||
# solve for the linear system Ax = B with A=PteCondEstim and B = prevs_estim
|
||||
A = PteCondEstim
|
||||
B = prevs_estim
|
||||
try:
|
||||
|
@ -348,18 +271,11 @@ class ACC(AggregativeQuantifier):
|
|||
|
||||
|
||||
class PCC(AggregativeProbabilisticQuantifier):
|
||||
"""
|
||||
`Probabilistic Classify & Count <https://ieeexplore.ieee.org/abstract/document/5694031>`_,
|
||||
the probabilistic variant of CC that relies on the posterior probabilities returned by a probabilistic classifier.
|
||||
|
||||
:param learner: a sklearn's Estimator that generates a classifier
|
||||
"""
|
||||
|
||||
def __init__(self, learner: BaseEstimator):
|
||||
self.learner = learner
|
||||
|
||||
def fit(self, data: LabelledCollection, fit_learner=True):
|
||||
self.learner, _ = _training_helper(self.learner, data, fit_learner, ensure_probabilistic=True)
|
||||
self.learner, _ = training_helper(self.learner, data, fit_learner, ensure_probabilistic=True)
|
||||
return self
|
||||
|
||||
def aggregate(self, classif_posteriors):
|
||||
|
@ -367,18 +283,6 @@ class PCC(AggregativeProbabilisticQuantifier):
|
|||
|
||||
|
||||
class PACC(AggregativeProbabilisticQuantifier):
|
||||
"""
|
||||
`Probabilistic Adjusted Classify & Count <https://ieeexplore.ieee.org/abstract/document/5694031>`_,
|
||||
the probabilistic variant of ACC that relies on the posterior probabilities returned by a probabilistic classifier.
|
||||
|
||||
:param learner: a sklearn's Estimator that generates a classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||||
misclassification rates are to be estimated.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
"""
|
||||
|
||||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||||
self.learner = learner
|
||||
|
@ -386,8 +290,7 @@ class PACC(AggregativeProbabilisticQuantifier):
|
|||
|
||||
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None):
|
||||
"""
|
||||
Trains a PACC quantifier.
|
||||
|
||||
Trains a PACC quantifier
|
||||
:param data: the training set
|
||||
:param fit_learner: set to False to bypass the training (the learner is assumed to be already fit)
|
||||
:param val_split: either a float in (0,1) indicating the proportion of training instances to use for
|
||||
|
@ -410,7 +313,7 @@ class PACC(AggregativeProbabilisticQuantifier):
|
|||
pbar.set_description(f'{self.__class__.__name__} fitting fold {k}')
|
||||
training = data.sampling_from_index(training_idx)
|
||||
validation = data.sampling_from_index(validation_idx)
|
||||
learner, val_data = _training_helper(
|
||||
learner, val_data = training_helper(
|
||||
self.learner, training, fit_learner, ensure_probabilistic=True, val_split=validation)
|
||||
y_.append(learner.predict_proba(val_data.instances))
|
||||
y.append(val_data.labels)
|
||||
|
@ -419,12 +322,12 @@ class PACC(AggregativeProbabilisticQuantifier):
|
|||
y_ = np.vstack(y_)
|
||||
|
||||
# fit the learner on all data
|
||||
self.learner, _ = _training_helper(self.learner, data, fit_learner, ensure_probabilistic=True,
|
||||
val_split=None)
|
||||
self.learner, _ = training_helper(self.learner, data, fit_learner, ensure_probabilistic=True,
|
||||
val_split=None)
|
||||
classes = data.classes_
|
||||
|
||||
else:
|
||||
self.learner, val_data = _training_helper(
|
||||
self.learner, val_data = training_helper(
|
||||
self.learner, data, fit_learner, ensure_probabilistic=True, val_split=val_split)
|
||||
y_ = self.learner.predict_proba(val_data.instances)
|
||||
y = val_data.labels
|
||||
|
@ -432,16 +335,23 @@ class PACC(AggregativeProbabilisticQuantifier):
|
|||
|
||||
self.pcc = PCC(self.learner)
|
||||
|
||||
self.Pte_cond_estim_ = self.getPteCondEstim(classes, y, y_)
|
||||
|
||||
return self
|
||||
|
||||
@classmethod
|
||||
def getPteCondEstim(cls, classes, y, y_):
|
||||
# estimate the matrix with entry (i,j) being the estimate of P(yi|yj), that is, the probability that a
|
||||
# document that belongs to yj ends up being classified as belonging to yi
|
||||
n_classes = len(classes)
|
||||
confusion = np.empty(shape=(n_classes, n_classes))
|
||||
# confusion = np.zeros(shape=(n_classes, n_classes))
|
||||
confusion = np.eye(n_classes)
|
||||
for i, class_ in enumerate(classes):
|
||||
confusion[i] = y_[y == class_].mean(axis=0)
|
||||
idx = y == class_
|
||||
if idx.any():
|
||||
confusion[i] = y_[idx].mean(axis=0)
|
||||
|
||||
self.Pte_cond_estim_ = confusion.T
|
||||
|
||||
return self
|
||||
return confusion.T
|
||||
|
||||
def aggregate(self, classif_posteriors):
|
||||
prevs_estim = self.pcc.aggregate(classif_posteriors)
|
||||
|
@ -453,13 +363,10 @@ class PACC(AggregativeProbabilisticQuantifier):
|
|||
|
||||
class EMQ(AggregativeProbabilisticQuantifier):
|
||||
"""
|
||||
`Expectation Maximization for Quantification <https://ieeexplore.ieee.org/abstract/document/6789744>`_ (EMQ),
|
||||
aka `Saerens-Latinne-Decaestecker` (SLD) algorithm.
|
||||
EMQ consists of using the well-known `Expectation Maximization algorithm` to iteratively update the posterior
|
||||
probabilities generated by a probabilistic classifier and the class prevalence estimates obtained via
|
||||
maximum-likelihood estimation, in a mutually recursive way, until convergence.
|
||||
|
||||
:param learner: a sklearn's Estimator that generates a classifier
|
||||
The method is described in:
|
||||
Saerens, M., Latinne, P., and Decaestecker, C. (2002).
|
||||
Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure.
|
||||
Neural Computation, 14(1): 21–41.
|
||||
"""
|
||||
|
||||
MAX_ITER = 1000
|
||||
|
@ -469,7 +376,7 @@ class EMQ(AggregativeProbabilisticQuantifier):
|
|||
self.learner = learner
|
||||
|
||||
def fit(self, data: LabelledCollection, fit_learner=True):
|
||||
self.learner, _ = _training_helper(self.learner, data, fit_learner, ensure_probabilistic=True)
|
||||
self.learner, _ = training_helper(self.learner, data, fit_learner, ensure_probabilistic=True)
|
||||
self.train_prevalence = F.prevalence_from_labels(data.labels, self.classes_)
|
||||
return self
|
||||
|
||||
|
@ -484,17 +391,6 @@ class EMQ(AggregativeProbabilisticQuantifier):
|
|||
|
||||
@classmethod
|
||||
def EM(cls, tr_prev, posterior_probabilities, epsilon=EPSILON):
|
||||
"""
|
||||
Computes the `Expectation Maximization` routine.
|
||||
|
||||
:param tr_prev: array-like, the training prevalence
|
||||
:param posterior_probabilities: `np.ndarray` of shape `(n_instances, n_classes,)` with the
|
||||
posterior probabilities
|
||||
:param epsilon: float, the threshold different between two consecutive iterations
|
||||
to reach before stopping the loop
|
||||
:return: a tuple with the estimated prevalence values (shape `(n_classes,)`) and
|
||||
the corrected posterior probabilities (shape `(n_instances, n_classes,)`)
|
||||
"""
|
||||
Px = posterior_probabilities
|
||||
Ptr = np.copy(tr_prev)
|
||||
qs = np.copy(Ptr) # qs (the running estimate) is initialized as the training prevalence
|
||||
|
@ -523,17 +419,9 @@ class EMQ(AggregativeProbabilisticQuantifier):
|
|||
|
||||
class HDy(AggregativeProbabilisticQuantifier, BinaryQuantifier):
|
||||
"""
|
||||
`Hellinger Distance y <https://www.sciencedirect.com/science/article/pii/S0020025512004069>`_ (HDy).
|
||||
HDy is a probabilistic method for training binary quantifiers, that models quantification as the problem of
|
||||
minimizing the divergence (in terms of the Hellinger Distance) between two cumulative distributions of posterior
|
||||
probabilities returned by the classifier. One of the distributions is generated from the unlabelled examples and
|
||||
the other is generated from a validation set. This latter distribution is defined as a mixture of the
|
||||
class-conditional distributions of the posterior probabilities returned for the positive and negative validation
|
||||
examples, respectively. The parameters of the mixture thus represent the estimates of the class prevalence values.
|
||||
|
||||
:param learner: a sklearn's Estimator that generates a binary classifier
|
||||
:param val_split: a float in range (0,1) indicating the proportion of data to be used as a stratified held-out
|
||||
validation distribution, or a :class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
Implementation of the method based on the Hellinger Distance y (HDy) proposed by
|
||||
González-Castro, V., Alaiz-Rodrı́guez, R., and Alegre, E. (2013). Class distribution
|
||||
estimation based on the Hellinger distance. Information Sciences, 218:146–164.
|
||||
"""
|
||||
|
||||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||||
|
@ -542,20 +430,19 @@ class HDy(AggregativeProbabilisticQuantifier, BinaryQuantifier):
|
|||
|
||||
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, LabelledCollection] = None):
|
||||
"""
|
||||
Trains a HDy quantifier.
|
||||
|
||||
Trains a HDy quantifier
|
||||
:param data: the training set
|
||||
:param fit_learner: set to False to bypass the training (the learner is assumed to be already fit)
|
||||
:param val_split: either a float in (0,1) indicating the proportion of training instances to use for
|
||||
validation (e.g., 0.3 for using 30% of the training set as validation data), or a
|
||||
:class:`quapy.data.base.LabelledCollection` indicating the validation set itself
|
||||
validation (e.g., 0.3 for using 30% of the training set as validation data), or a LabelledCollection
|
||||
indicating the validation set itself
|
||||
:return: self
|
||||
"""
|
||||
if val_split is None:
|
||||
val_split = self.val_split
|
||||
|
||||
self._check_binary(data, self.__class__.__name__)
|
||||
self.learner, validation = _training_helper(
|
||||
self.learner, validation = training_helper(
|
||||
self.learner, data, fit_learner, ensure_probabilistic=True, val_split=val_split)
|
||||
Px = self.posterior_probabilities(validation.instances)[:, 1] # takes only the P(y=+1|x)
|
||||
self.Pxy1 = Px[validation.labels == self.learner.classes_[1]]
|
||||
|
@ -586,7 +473,7 @@ class HDy(AggregativeProbabilisticQuantifier, BinaryQuantifier):
|
|||
Px_test, _ = np.histogram(Px, bins=bins, range=(0, 1), density=True)
|
||||
|
||||
prev_selected, min_dist = None, None
|
||||
for prev in F.prevalence_linspace(n_prevalences=100, repeats=1, smooth_limits_epsilon=0.0):
|
||||
for prev in F.prevalence_linspace(n_prevalences=100, repeat=1, smooth_limits_epsilon=0.0):
|
||||
Px_train = prev * Pxy1_density + (1 - prev) * Pxy0_density
|
||||
hdy = F.HellingerDistance(Px_train, Px_test)
|
||||
if prev_selected is None or hdy < min_dist:
|
||||
|
@ -598,19 +485,6 @@ class HDy(AggregativeProbabilisticQuantifier, BinaryQuantifier):
|
|||
|
||||
|
||||
class ELM(AggregativeQuantifier, BinaryQuantifier):
|
||||
"""
|
||||
Class of Explicit Loss Minimization (ELM) quantifiers.
|
||||
Quantifiers based on ELM represent a family of methods based on structured output learning;
|
||||
these quantifiers rely on classifiers that have been optimized using a quantification-oriented loss
|
||||
measure. This implementation relies on
|
||||
`Joachims’ SVM perf <https://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html>`_ structured output
|
||||
learning algorithm, which has to be installed and patched for the purpose (see this
|
||||
`script <https://github.com/HLT-ISTI/QuaPy/blob/master/prepare_svmperf.sh>`_).
|
||||
|
||||
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
|
||||
:param loss: the loss to optimize (see :attr:`quapy.classification.svmperf.SVMperf.valid_losses`)
|
||||
:param kwargs: rest of SVM perf's parameters
|
||||
"""
|
||||
|
||||
def __init__(self, svmperf_base=None, loss='01', **kwargs):
|
||||
self.svmperf_base = svmperf_base if svmperf_base is not None else qp.environ['SVMPERF_HOME']
|
||||
|
@ -633,15 +507,9 @@ class ELM(AggregativeQuantifier, BinaryQuantifier):
|
|||
|
||||
class SVMQ(ELM):
|
||||
"""
|
||||
SVM(Q), which attempts to minimize the `Q` loss combining a classification-oriented loss and a
|
||||
quantification-oriented loss, as proposed by
|
||||
`Barranquero et al. 2015 <https://www.sciencedirect.com/science/article/pii/S003132031400291X>`_.
|
||||
Equivalent to:
|
||||
|
||||
>>> ELM(svmperf_base, loss='q', **kwargs)
|
||||
|
||||
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
|
||||
:param kwargs: rest of SVM perf's parameters
|
||||
Barranquero, J., Díez, J., and del Coz, J. J. (2015).
|
||||
Quantification-oriented learning based on reliable classifiers.
|
||||
Pattern Recognition, 48(2):591–604.
|
||||
"""
|
||||
|
||||
def __init__(self, svmperf_base=None, **kwargs):
|
||||
|
@ -650,14 +518,9 @@ class SVMQ(ELM):
|
|||
|
||||
class SVMKLD(ELM):
|
||||
"""
|
||||
SVM(KLD), which attempts to minimize the Kullback-Leibler Divergence as proposed by
|
||||
`Esuli et al. 2015 <https://dl.acm.org/doi/abs/10.1145/2700406>`_.
|
||||
Equivalent to:
|
||||
|
||||
>>> ELM(svmperf_base, loss='kld', **kwargs)
|
||||
|
||||
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
|
||||
:param kwargs: rest of SVM perf's parameters
|
||||
Esuli, A. and Sebastiani, F. (2015).
|
||||
Optimizing text quantifiers for multivariate loss functions.
|
||||
ACM Transactions on Knowledge Discovery and Data, 9(4):Article 27.
|
||||
"""
|
||||
|
||||
def __init__(self, svmperf_base=None, **kwargs):
|
||||
|
@ -666,15 +529,9 @@ class SVMKLD(ELM):
|
|||
|
||||
class SVMNKLD(ELM):
|
||||
"""
|
||||
SVM(NKLD), which attempts to minimize a version of the the Kullback-Leibler Divergence normalized
|
||||
via the logistic function, as proposed by
|
||||
`Esuli et al. 2015 <https://dl.acm.org/doi/abs/10.1145/2700406>`_.
|
||||
Equivalent to:
|
||||
|
||||
>>> ELM(svmperf_base, loss='nkld', **kwargs)
|
||||
|
||||
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
|
||||
:param kwargs: rest of SVM perf's parameters
|
||||
Esuli, A. and Sebastiani, F. (2015).
|
||||
Optimizing text quantifiers for multivariate loss functions.
|
||||
ACM Transactions on Knowledge Discovery and Data, 9(4):Article 27.
|
||||
"""
|
||||
|
||||
def __init__(self, svmperf_base=None, **kwargs):
|
||||
|
@ -682,60 +539,25 @@ class SVMNKLD(ELM):
|
|||
|
||||
|
||||
class SVMAE(ELM):
|
||||
"""
|
||||
SVM(AE), which attempts to minimize Absolute Error as first used by
|
||||
`Moreo and Sebastiani, 2021 <https://arxiv.org/abs/2011.02552>`_.
|
||||
Equivalent to:
|
||||
|
||||
>>> ELM(svmperf_base, loss='mae', **kwargs)
|
||||
|
||||
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
|
||||
:param kwargs: rest of SVM perf's parameters
|
||||
"""
|
||||
|
||||
def __init__(self, svmperf_base=None, **kwargs):
|
||||
super(SVMAE, self).__init__(svmperf_base, loss='mae', **kwargs)
|
||||
|
||||
|
||||
class SVMRAE(ELM):
|
||||
"""
|
||||
SVM(RAE), which attempts to minimize Relative Absolute Error as first used by
|
||||
`Moreo and Sebastiani, 2021 <https://arxiv.org/abs/2011.02552>`_.
|
||||
Equivalent to:
|
||||
|
||||
>>> ELM(svmperf_base, loss='mrae', **kwargs)
|
||||
|
||||
:param svmperf_base: path to the folder containing the binary files of `SVM perf`
|
||||
:param kwargs: rest of SVM perf's parameters
|
||||
"""
|
||||
|
||||
def __init__(self, svmperf_base=None, **kwargs):
|
||||
super(SVMRAE, self).__init__(svmperf_base, loss='mrae', **kwargs)
|
||||
|
||||
|
||||
class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
|
||||
"""
|
||||
Abstract class of Threshold Optimization variants for :class:`ACC` as proposed by
|
||||
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
|
||||
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_.
|
||||
The goal is to bring improved stability to the denominator of the adjustment.
|
||||
The different variants are based on different heuristics for choosing a decision threshold
|
||||
that would allow for more true positives and many more false positives, on the grounds this
|
||||
would deliver larger denominators.
|
||||
|
||||
:param learner: a sklearn's Estimator that generates a classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||||
misclassification rates are to be estimated.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
"""
|
||||
|
||||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||||
self.learner = learner
|
||||
self.val_split = val_split
|
||||
|
||||
@abstractmethod
|
||||
def optimize_threshold(self, y, probabilities):
|
||||
...
|
||||
|
||||
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None):
|
||||
self._check_binary(data, "Threshold Optimization")
|
||||
|
||||
|
@ -752,7 +574,7 @@ class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
|
|||
pbar.set_description(f'{self.__class__.__name__} fitting fold {k}')
|
||||
training = data.sampling_from_index(training_idx)
|
||||
validation = data.sampling_from_index(validation_idx)
|
||||
learner, val_data = _training_helper(self.learner, training, fit_learner, val_split=validation)
|
||||
learner, val_data = training_helper(self.learner, training, fit_learner, val_split=validation)
|
||||
probabilities.append(learner.predict_proba(val_data.instances))
|
||||
y.append(val_data.labels)
|
||||
|
||||
|
@ -760,16 +582,16 @@ class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
|
|||
probabilities = np.concatenate(probabilities)
|
||||
|
||||
# fit the learner on all data
|
||||
self.learner, _ = _training_helper(self.learner, data, fit_learner, val_split=None)
|
||||
self.learner, _ = training_helper(self.learner, data, fit_learner, val_split=None)
|
||||
|
||||
else:
|
||||
self.learner, val_data = _training_helper(self.learner, data, fit_learner, val_split=val_split)
|
||||
self.learner, val_data = training_helper(self.learner, data, fit_learner, val_split=val_split)
|
||||
probabilities = self.learner.predict_proba(val_data.instances)
|
||||
y = val_data.labels
|
||||
|
||||
self.cc = CC(self.learner)
|
||||
|
||||
self.tpr, self.fpr = self._optimize_threshold(y, probabilities)
|
||||
self.tpr, self.fpr = self.optimize_threshold(y, probabilities)
|
||||
|
||||
return self
|
||||
|
||||
|
@ -777,32 +599,20 @@ class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
|
|||
def _condition(self, tpr, fpr) -> float:
|
||||
"""
|
||||
Implements the criterion according to which the threshold should be selected.
|
||||
This function should return the (float) score to be minimized.
|
||||
|
||||
:param tpr: float, true positive rate
|
||||
:param fpr: float, false positive rate
|
||||
:return: float, a score for the given `tpr` and `fpr`
|
||||
This function should return a (float) score to be minimized.
|
||||
"""
|
||||
...
|
||||
|
||||
def _optimize_threshold(self, y, probabilities):
|
||||
"""
|
||||
Seeks for the best `tpr` and `fpr` according to the score obtained at different
|
||||
decision thresholds. The scoring function is implemented in function `_condition`.
|
||||
|
||||
:param y: predicted labels for the validation set (or for the training set via `k`-fold cross validation)
|
||||
:param probabilities: array-like with the posterior probabilities
|
||||
:return: best `tpr` and `fpr` according to `_condition`
|
||||
"""
|
||||
def optimize_threshold(self, y, probabilities):
|
||||
best_candidate_threshold_score = None
|
||||
best_tpr = 0
|
||||
best_fpr = 0
|
||||
candidate_thresholds = np.unique(probabilities[:, 1])
|
||||
for candidate_threshold in candidate_thresholds:
|
||||
y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]]
|
||||
TP, FP, FN, TN = self._compute_table(y, y_)
|
||||
tpr = self._compute_tpr(TP, FP)
|
||||
fpr = self._compute_fpr(FP, TN)
|
||||
TP, FP, FN, TN = self.compute_table(y, y_)
|
||||
tpr = self.compute_tpr(TP, FP)
|
||||
fpr = self.compute_fpr(FP, TN)
|
||||
condition_score = self._condition(tpr, fpr)
|
||||
if best_candidate_threshold_score is None or condition_score < best_candidate_threshold_score:
|
||||
best_candidate_threshold_score = condition_score
|
||||
|
@ -819,40 +629,25 @@ class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
|
|||
adjusted_prevs_estim = np.array((1 - adjusted_prevs_estim, adjusted_prevs_estim))
|
||||
return adjusted_prevs_estim
|
||||
|
||||
def _compute_table(self, y, y_):
|
||||
def compute_table(self, y, y_):
|
||||
TP = np.logical_and(y == y_, y == self.classes_[1]).sum()
|
||||
FP = np.logical_and(y != y_, y == self.classes_[0]).sum()
|
||||
FN = np.logical_and(y != y_, y == self.classes_[1]).sum()
|
||||
TN = np.logical_and(y == y_, y == self.classes_[0]).sum()
|
||||
return TP, FP, FN, TN
|
||||
|
||||
def _compute_tpr(self, TP, FP):
|
||||
def compute_tpr(self, TP, FP):
|
||||
if TP + FP == 0:
|
||||
return 0
|
||||
return TP / (TP + FP)
|
||||
|
||||
def _compute_fpr(self, FP, TN):
|
||||
def compute_fpr(self, FP, TN):
|
||||
if FP + TN == 0:
|
||||
return 0
|
||||
return FP / (FP + TN)
|
||||
|
||||
|
||||
class T50(ThresholdOptimization):
|
||||
"""
|
||||
Threshold Optimization variant for :class:`ACC` as proposed by
|
||||
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
|
||||
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that looks
|
||||
for the threshold that makes `tpr` cosest to 0.5.
|
||||
The goal is to bring improved stability to the denominator of the adjustment.
|
||||
|
||||
:param learner: a sklearn's Estimator that generates a classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||||
misclassification rates are to be estimated.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
"""
|
||||
|
||||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||||
super().__init__(learner, val_split)
|
||||
|
@ -862,21 +657,6 @@ class T50(ThresholdOptimization):
|
|||
|
||||
|
||||
class MAX(ThresholdOptimization):
|
||||
"""
|
||||
Threshold Optimization variant for :class:`ACC` as proposed by
|
||||
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
|
||||
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that looks
|
||||
for the threshold that maximizes `tpr-fpr`.
|
||||
The goal is to bring improved stability to the denominator of the adjustment.
|
||||
|
||||
:param learner: a sklearn's Estimator that generates a classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||||
misclassification rates are to be estimated.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
"""
|
||||
|
||||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||||
super().__init__(learner, val_split)
|
||||
|
@ -887,21 +667,6 @@ class MAX(ThresholdOptimization):
|
|||
|
||||
|
||||
class X(ThresholdOptimization):
|
||||
"""
|
||||
Threshold Optimization variant for :class:`ACC` as proposed by
|
||||
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
|
||||
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that looks
|
||||
for the threshold that yields `tpr=1-fpr`.
|
||||
The goal is to bring improved stability to the denominator of the adjustment.
|
||||
|
||||
:param learner: a sklearn's Estimator that generates a classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||||
misclassification rates are to be estimated.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
"""
|
||||
|
||||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||||
super().__init__(learner, val_split)
|
||||
|
@ -911,70 +676,41 @@ class X(ThresholdOptimization):
|
|||
|
||||
|
||||
class MS(ThresholdOptimization):
|
||||
"""
|
||||
Median Sweep. Threshold Optimization variant for :class:`ACC` as proposed by
|
||||
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
|
||||
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that generates
|
||||
class prevalence estimates for all decision thresholds and returns the median of them all.
|
||||
The goal is to bring improved stability to the denominator of the adjustment.
|
||||
|
||||
:param learner: a sklearn's Estimator that generates a classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||||
misclassification rates are to be estimated.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
"""
|
||||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||||
super().__init__(learner, val_split)
|
||||
|
||||
def _condition(self, tpr, fpr) -> float:
|
||||
pass
|
||||
|
||||
def _optimize_threshold(self, y, probabilities):
|
||||
def optimize_threshold(self, y, probabilities):
|
||||
tprs = []
|
||||
fprs = []
|
||||
candidate_thresholds = np.unique(probabilities[:, 1])
|
||||
for candidate_threshold in candidate_thresholds:
|
||||
y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]]
|
||||
TP, FP, FN, TN = self._compute_table(y, y_)
|
||||
tpr = self._compute_tpr(TP, FP)
|
||||
fpr = self._compute_fpr(FP, TN)
|
||||
TP, FP, FN, TN = self.compute_table(y, y_)
|
||||
tpr = self.compute_tpr(TP, FP)
|
||||
fpr = self.compute_fpr(FP, TN)
|
||||
tprs.append(tpr)
|
||||
fprs.append(fpr)
|
||||
return np.median(tprs), np.median(fprs)
|
||||
|
||||
|
||||
class MS2(MS):
|
||||
"""
|
||||
Median Sweep 2. Threshold Optimization variant for :class:`ACC` as proposed by
|
||||
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
|
||||
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that generates
|
||||
class prevalence estimates for all decision thresholds and returns the median of for cases in
|
||||
which `tpr-fpr>0.25`
|
||||
The goal is to bring improved stability to the denominator of the adjustment.
|
||||
|
||||
:param learner: a sklearn's Estimator that generates a classifier
|
||||
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||||
misclassification rates are to be estimated.
|
||||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||||
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
|
||||
:class:`quapy.data.base.LabelledCollection` (the split itself).
|
||||
"""
|
||||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||||
super().__init__(learner, val_split)
|
||||
|
||||
def _optimize_threshold(self, y, probabilities):
|
||||
def optimize_threshold(self, y, probabilities):
|
||||
tprs = [0, 1]
|
||||
fprs = [0, 1]
|
||||
candidate_thresholds = np.unique(probabilities[:, 1])
|
||||
for candidate_threshold in candidate_thresholds:
|
||||
y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]]
|
||||
TP, FP, FN, TN = self._compute_table(y, y_)
|
||||
tpr = self._compute_tpr(TP, FP)
|
||||
fpr = self._compute_fpr(FP, TN)
|
||||
TP, FP, FN, TN = self.compute_table(y, y_)
|
||||
tpr = self.compute_tpr(TP, FP)
|
||||
fpr = self.compute_fpr(FP, TN)
|
||||
if (tpr - fpr) > 0.25:
|
||||
tprs.append(tpr)
|
||||
fprs.append(fpr)
|
||||
|
@ -986,7 +722,6 @@ AdjustedClassifyAndCount = ACC
|
|||
ProbabilisticClassifyAndCount = PCC
|
||||
ProbabilisticAdjustedClassifyAndCount = PACC
|
||||
ExpectationMaximizationQuantifier = EMQ
|
||||
SLD = EMQ
|
||||
HellingerDistanceY = HDy
|
||||
ExplicitLossMinimisation = ELM
|
||||
MedianSweep = MS
|
||||
|
@ -995,14 +730,11 @@ MedianSweep2 = MS2
|
|||
|
||||
class OneVsAll(AggregativeQuantifier):
|
||||
"""
|
||||
Allows any binary quantifier to perform quantification on single-label datasets.
|
||||
The method maintains one binary quantifier for each class, and then l1-normalizes the outputs so that the
|
||||
class prevelences sum up to 1.
|
||||
This variant was used, along with the :class:`EMQ` quantifier, in
|
||||
`Gao and Sebastiani, 2016 <https://link.springer.com/content/pdf/10.1007/s13278-016-0327-z.pdf>`_.
|
||||
|
||||
:param learner: a sklearn's Estimator that generates a binary classifier
|
||||
:param n_jobs: number of parallel workers
|
||||
Allows any binary quantifier to perform quantification on single-label datasets. The method maintains one binary
|
||||
quantifier for each class, and then l1-normalizes the outputs so that the class prevelences sum up to 1.
|
||||
This variant was used, along with the ExplicitLossMinimization quantifier in
|
||||
Gao, W., Sebastiani, F.: From classification to quantification in tweet sentiment analysis.
|
||||
Social Network Analysis and Mining 6(19), 1–22 (2016)
|
||||
"""
|
||||
|
||||
def __init__(self, binary_quantifier, n_jobs=-1):
|
||||
|
@ -1021,30 +753,18 @@ class OneVsAll(AggregativeQuantifier):
|
|||
return self
|
||||
|
||||
def classify(self, instances):
|
||||
"""
|
||||
Returns a matrix of shape `(n,m,)` with `n` the number of instances and `m` the number of classes. The entry
|
||||
`(i,j)` is a binary value indicating whether instance `i `belongs to class `j`. The binary classifications are
|
||||
independent of each other, meaning that an instance can end up be attributed to 0, 1, or more classes.
|
||||
|
||||
:param instances: array-like
|
||||
:return: `np.ndarray`
|
||||
"""
|
||||
|
||||
# returns a matrix of shape (n,m) with n the number of instances and m the number of classes. The entry
|
||||
# (i,j) is a binary value indicating whether instance i belongs to class j. The binary classifications are
|
||||
# independent of each other, meaning that an instance can end up be attributed to 0, 1, or more classes.
|
||||
classif_predictions_bin = self.__parallel(self._delayed_binary_classification, instances)
|
||||
return classif_predictions_bin.T
|
||||
|
||||
def posterior_probabilities(self, instances):
|
||||
"""
|
||||
Returns a matrix of shape `(n,m,2)` with `n` the number of instances and `m` the number of classes. The entry
|
||||
`(i,j,1)` (resp. `(i,j,0)`) is a value in [0,1] indicating the posterior probability that instance `i` belongs
|
||||
(resp. does not belong) to class `j`.
|
||||
The posterior probabilities are independent of each other, meaning that, in general, they do not sum
|
||||
up to one.
|
||||
|
||||
:param instances: array-like
|
||||
:return: `np.ndarray`
|
||||
"""
|
||||
|
||||
# returns a matrix of shape (n,m,2) with n the number of instances and m the number of classes. The entry
|
||||
# (i,j,1) (resp. (i,j,0)) is a value in [0,1] indicating the posterior probability that instance i belongs
|
||||
# (resp. does not belong) to class j.
|
||||
# The posterior probabilities are independent of each other, meaning that, in general, they do not sum
|
||||
# up to one.
|
||||
if not self.binary_quantifier.probabilistic:
|
||||
raise NotImplementedError(f'{self.__class__.__name__} does not implement posterior_probabilities because '
|
||||
f'the base quantifier {self.binary_quantifier.__class__.__name__} is not '
|
||||
|
@ -1091,7 +811,7 @@ class OneVsAll(AggregativeQuantifier):
|
|||
return self.binary_quantifier.get_params()
|
||||
|
||||
def _delayed_binary_classification(self, c, X):
|
||||
return self.dict_binary_quantifiers[c].classify(X)
|
||||
return self.dict_binary_quantifiers[c].preclassify(X)
|
||||
|
||||
def _delayed_binary_posteriors(self, c, X):
|
||||
return self.dict_binary_quantifiers[c].posterior_probabilities(X)
|
||||
|
@ -1106,19 +826,8 @@ class OneVsAll(AggregativeQuantifier):
|
|||
|
||||
@property
|
||||
def binary(self):
|
||||
"""
|
||||
Informs that the classifier is not binary
|
||||
|
||||
:return: False
|
||||
"""
|
||||
return False
|
||||
|
||||
@property
|
||||
def probabilistic(self):
|
||||
"""
|
||||
Indicates if the classifier is probabilistic or not (depending on the nature of the base classifier).
|
||||
|
||||
:return: boolean
|
||||
"""
|
||||
|
||||
return self.binary_quantifier.probabilistic
|
||||
|
|
Loading…
Reference in New Issue