forked from moreo/QuaPy
readme updated
This commit is contained in:
parent
b6f80077d7
commit
91f8d8f3e1
72
README.md
72
README.md
|
@ -11,6 +11,13 @@ used for evaluating quantification methods.
|
||||||
QuaPy also integrates commonly used datasets and offers visualization tools
|
QuaPy also integrates commonly used datasets and offers visualization tools
|
||||||
for facilitating the analysis and interpretation of results.
|
for facilitating the analysis and interpretation of results.
|
||||||
|
|
||||||
|
## A quick example:
|
||||||
|
|
||||||
|
The following script fetchs a Twitter dataset, trains and evaluates an
|
||||||
|
_Adjusted Classify & Count_ model in terms of the _Mean Absolute Error_ (MAE)
|
||||||
|
between the class prevalences estimated for the test set and the true prevalences
|
||||||
|
of the test set.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import quapy as qp
|
import quapy as qp
|
||||||
from sklearn.linear_model import LogisticRegression
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
@ -21,14 +28,69 @@ dataset = qp.datasets.fetch_twitter('semeval16')
|
||||||
model = qp.method.aggregative.ACC(LogisticRegression())
|
model = qp.method.aggregative.ACC(LogisticRegression())
|
||||||
model.fit(dataset.training)
|
model.fit(dataset.training)
|
||||||
|
|
||||||
prevalences_estim = model.quantify(dataset.test.instances)
|
estim_prevalences = model.quantify(dataset.test.instances)
|
||||||
prevalences_true = dataset.test.prevalence()
|
true_prevalences = dataset.test.prevalence()
|
||||||
|
|
||||||
error = qp.error.mae(prevalences_true, prevalences_estim)
|
error = qp.error.mae(true_prevalences, estim_prevalences)
|
||||||
|
|
||||||
print(f'MAE={error:.3f}')
|
print(f'Mean Absolute Error (MAE)={error:.3f}')
|
||||||
```
|
```
|
||||||
|
|
||||||
binary, and single-label
|
Quantification is useful in scenarios of distribution shift. In other
|
||||||
|
words, we would not need to estimate the class prevalences of the test set if
|
||||||
|
we could assume the IID assumption to hold, as this prevalence would simply coincide with the
|
||||||
|
class prevalence of the training set. That is to say, a Quantification model
|
||||||
|
should be tested across samples characterized by different class prevalences.
|
||||||
|
QuaPy implements sampling procedures and evaluation protocols that automates this endeavour.
|
||||||
|
See the Wiki for detailed examples.
|
||||||
|
|
||||||
|
## Features
|
||||||
|
|
||||||
|
* Implementation of most popular quantification methods (Classify-&-Count variants, Expectation-Maximization,
|
||||||
|
SVM-based variants for quantification, HDy, QuaNet, and Ensembles).
|
||||||
|
* Versatile functionality for performing evaluation based on artificial sampling protocols.
|
||||||
|
* Implementation of most commonly used evaluation metrics (e.g., MAE, MRAE, MSE, NKLD, etc.).
|
||||||
|
* Popular datasets for Quantification (textual and numeric) available, including:
|
||||||
|
* 32 UCI Machine Learning datasets.
|
||||||
|
* 11 Twitter Sentiment datasets.
|
||||||
|
* 3 Reviews Sentiment datasets.
|
||||||
|
* Native supports for binary and single-label scenarios of quantification.
|
||||||
|
* Model selection functionality targeting quantification-oriented losses.
|
||||||
|
* Plotting routines ("error-by-drift", "diagonal", and "bias" plots).
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
|
||||||
|
* sklearnm, numpy, scipy
|
||||||
|
* pytorch (for QuaNet)
|
||||||
|
* svmperf patched for quantification (see below)
|
||||||
|
* joblib
|
||||||
|
* tqdm
|
||||||
|
* pandas, xlrd
|
||||||
|
* matplotlib
|
||||||
|
|
||||||
|
## SVM-perf with quantification-oriented losses
|
||||||
|
In order to run experiments involving SVM(Q), SVM(KLD), SVM(NKLD),
|
||||||
|
SVM(AE), or SVM(RAE), you have to first download the
|
||||||
|
[svmperf](http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html)
|
||||||
|
package, apply the patch
|
||||||
|
[svm-perf-quantification-ext.patch](./svm-perf-quantification-ext.patch), and compile the sources.
|
||||||
|
The script [prepare_svmperf.sh](prepare_svmperf.sh) does all the job. Simply run:
|
||||||
|
|
||||||
|
```
|
||||||
|
./prepare_svmperf.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
The resulting directory [svm_perf_quantification](./svm_perf_quantification) contains the
|
||||||
|
patched version of _svmperf_ with quantification-oriented losses.
|
||||||
|
|
||||||
|
The [svm-perf-quantification-ext.patch](./svm-perf-quantification-ext.patch) is an extension of the patch made available by
|
||||||
|
[Esuli et al. 2015](https://dl.acm.org/doi/abs/10.1145/2700406?casa_token=8D2fHsGCVn0AAAAA:ZfThYOvrzWxMGfZYlQW_y8Cagg-o_l6X_PcF09mdETQ4Tu7jK98mxFbGSXp9ZSO14JkUIYuDGFG0)
|
||||||
|
that allows SVMperf to optimize for
|
||||||
|
the _Q_ measure as proposed by [Barranquero et al. 2015](https://www.sciencedirect.com/science/article/abs/pii/S003132031400291X)
|
||||||
|
and for the _KLD_ and _NKLD_ as proposed by [Esuli et al. 2015](https://dl.acm.org/doi/abs/10.1145/2700406?casa_token=8D2fHsGCVn0AAAAA:ZfThYOvrzWxMGfZYlQW_y8Cagg-o_l6X_PcF09mdETQ4Tu7jK98mxFbGSXp9ZSO14JkUIYuDGFG0)
|
||||||
|
for quantification.
|
||||||
|
This patch extends the former by also allowing SVMperf to optimize for
|
||||||
|
_AE_ and _RAE_.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
7
TODO.txt
7
TODO.txt
|
@ -10,14 +10,8 @@ an instance of single-label with 2 labels. Check
|
||||||
Add classnames to LabelledCollection ?
|
Add classnames to LabelledCollection ?
|
||||||
Check the overhead in OneVsAll for SVMperf-based (?)
|
Check the overhead in OneVsAll for SVMperf-based (?)
|
||||||
Add HDy to QuaNet? if so, wrap HDy into OneVsAll in case the dataset is not binary.
|
Add HDy to QuaNet? if so, wrap HDy into OneVsAll in case the dataset is not binary.
|
||||||
Plots (one for binary -- the "diagonal", or for a specific class), another for the error as a funcition of drift.
|
|
||||||
Add datasets for topic.
|
Add datasets for topic.
|
||||||
Add other methods
|
|
||||||
Clarify whether QuaNet is an aggregative method or not.
|
Clarify whether QuaNet is an aggregative method or not.
|
||||||
Add datasets from Pérez-Gallego et al. 2017, 2019
|
|
||||||
Add ensemble models from Pérez-Gallego et al. 2017, 2019
|
|
||||||
Add plots models like those in Pérez-Gallego et al. 2017 (error boxes)
|
|
||||||
Add support for CV prediction in ACC and PACC for tpr, fpr
|
|
||||||
Add medium swap method
|
Add medium swap method
|
||||||
Explore the hyperparameter "number of bins" in HDy
|
Explore the hyperparameter "number of bins" in HDy
|
||||||
Implement HDy for single-label?
|
Implement HDy for single-label?
|
||||||
|
@ -25,4 +19,3 @@ Rename EMQ to SLD ?
|
||||||
How many times is the system of equations for ACC and PACC not solved? How many times is it clipped? Do they sum up
|
How many times is the system of equations for ACC and PACC not solved? How many times is it clipped? Do they sum up
|
||||||
to one always?
|
to one always?
|
||||||
Parallelize the kFCV in ACC and PACC
|
Parallelize the kFCV in ACC and PACC
|
||||||
Requirements: xlrd for reading excel
|
|
|
@ -195,6 +195,7 @@ class Dataset:
|
||||||
print(f'Dataset={self.name} #tr-instances={tr_stats["instances"]}, #te-instances={te_stats["instances"]}, '
|
print(f'Dataset={self.name} #tr-instances={tr_stats["instances"]}, #te-instances={te_stats["instances"]}, '
|
||||||
f'type={tr_stats["type"]}, #features={tr_stats["features"]}, #classes={tr_stats["classes"]}, '
|
f'type={tr_stats["type"]}, #features={tr_stats["features"]}, #classes={tr_stats["classes"]}, '
|
||||||
f'tr-prevs={tr_stats["prevs"]}, te-prevs={te_stats["prevs"]}')
|
f'tr-prevs={tr_stats["prevs"]}, te-prevs={te_stats["prevs"]}')
|
||||||
|
return {'train': tr_stats ,'test':te_stats}
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def kFCV(cls, data: LabelledCollection, nfolds=5, nrepeats=1, random_state=0):
|
def kFCV(cls, data: LabelledCollection, nfolds=5, nrepeats=1, random_state=0):
|
||||||
|
|
Loading…
Reference in New Issue