Loads the IFCB dataset for quantification <https://zenodo.org/records/10036244 >`. For more
-information on this dataset check the zenodo site.
-This dataset is based on the data available publicly at <https://github.com/hsosik/WHOI-Plankton >.
-The scripts for the processing are available at <https://github.com/pglez82/IFCB_Zenodo >
-Basically, this is the IFCB dataset with precomputed features for testing quantification algorithms.
+quapy.data.datasets. fetch_IFCB ( single_sample_train = True , for_model_selection = False , data_home = None ) [source]
+Loads the IFCB dataset for quantification from Zenodo (for more
+information on this dataset, please follow the zenodo link).
+This dataset is based on the data available publicly at
+WHOI-Plankton repo .
+The scripts for the processing are available at P. González’s repo .
+Basically, this is the IFCB dataset with precomputed features for testing quantification algorithms.
The datasets are downloaded only once, and stored for fast reuse.
Parameters:
-single_sample_train – boolean. If True (default), it returns the train dataset as an instance of
+
single_sample_train – a boolean. If true, it will return the train dataset as a
quapy.data.base.LabelledCollection
(all examples together).
-If False, a generator of training samples will be returned.
-Each example in the training set has an individual class label.
+If false, a generator of training samples will be returned. Each example in the training set has an individual label.
+for_model_selection – if True, then returns a split 30% of the training set (86 out of 286 samples) to be used for model selection;
+if False, then returns the full training set as training set and the test set as the test set
data_home – specify the quapy home directory where collections will be dumped (leave empty to use the default
~/quay_data/ directory)
Returns:
a tuple (train, test_gen) where train is an instance of
-quapy.data.base.LabelledCollection
, if single_sample_train is True or
-quapy.data._ifcb.IFCBTrainSamplesFromDir
otherwise, i.e. a sampling protocol that
-returns a series of samples labelled example by example.
-test_gen is an instance of quapy.data._ifcb.IFCBTestSamples
,
+quapy.data.base.LabelledCollection
, if single_sample_train is true or
+quapy.data._ifcb.IFCBTrainSamplesFromDir
, i.e. a sampling protocol that returns a series of samples
+labelled example by example. test_gen will be a quapy.data._ifcb.IFCBTestSamples
,
i.e., a sampling protocol that returns a series of samples labelled by prevalence.
diff --git a/docs/build/html/quapy.method.html b/docs/build/html/quapy.method.html
index 4600719..e843d2a 100644
--- a/docs/build/html/quapy.method.html
+++ b/docs/build/html/quapy.method.html
@@ -22,7 +22,6 @@
-
@@ -52,7 +51,6 @@
quapy.classification package
quapy.data package
quapy.method package
-quapy.tests package
Submodules
@@ -2820,7 +2818,6 @@ any quantification method should beat.
diff --git a/docs/build/html/searchindex.js b/docs/build/html/searchindex.js
index a496ff8..d694e18 100644
--- a/docs/build/html/searchindex.js
+++ b/docs/build/html/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"alltitles": {"Contents": [[1, "contents"]], "GitHub": [[1, "github"]], "Indices and tables": [[1, "indices-and-tables"]], "Installation": [[1, "installation"]], "Module contents": [[3, "module-quapy"], [4, "module-quapy.classification"], [5, "module-quapy.data"], [6, "module-quapy.method"]], "Submodules": [[3, "submodules"], [4, "submodules"], [5, "submodules"], [6, "submodules"]], "Subpackages": [[3, "subpackages"]], "Welcome to QuaPy\u2019s documentation!": [[1, "welcome-to-quapy-s-documentation"]], "quapy": [[0, "module-quapy"], [2, "quapy"]], "quapy package": [[3, "quapy-package"]], "quapy.classification package": [[4, "quapy-classification-package"]], "quapy.classification.calibration module": [[4, "module-quapy.classification.calibration"]], "quapy.classification.methods module": [[4, "module-quapy.classification.methods"]], "quapy.classification.neural module": [[4, "module-quapy.classification.neural"]], "quapy.classification.svmperf module": [[4, "module-quapy.classification.svmperf"]], "quapy.data package": [[5, "quapy-data-package"]], "quapy.data.base module": [[5, "module-quapy.data.base"]], "quapy.data.datasets module": [[5, "module-quapy.data.datasets"]], "quapy.data.preprocessing module": [[5, "module-quapy.data.preprocessing"]], "quapy.data.reader module": [[5, "module-quapy.data.reader"]], "quapy.error module": [[3, "module-quapy.error"]], "quapy.evaluation module": [[3, "module-quapy.evaluation"]], "quapy.functional module": [[3, "module-quapy.functional"]], "quapy.method package": [[6, "quapy-method-package"]], "quapy.method.aggregative module": [[6, "module-quapy.method.aggregative"]], "quapy.method.base module": [[6, "module-quapy.method.base"]], "quapy.method.meta module": [[6, "module-quapy.method.meta"]], "quapy.method.non_aggregative module": [[6, "module-quapy.method.non_aggregative"]], "quapy.model_selection module": [[3, "module-quapy.model_selection"]], "quapy.plot module": [[3, "module-quapy.plot"]], "quapy.protocol module": [[3, "module-quapy.protocol"]], "quapy.util module": [[3, "module-quapy.util"]]}, "docnames": ["generated/quapy", "index", "modules", "quapy", "quapy.classification", "quapy.data", "quapy.method"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["generated/quapy.rst", "index.rst", "modules.rst", "quapy.rst", "quapy.classification.rst", "quapy.data.rst", "quapy.method.rst"], "indexentries": {"absolute_error() (in module quapy.error)": [[3, "quapy.error.absolute_error"]], "abstractprotocol (class in quapy.protocol)": [[3, "quapy.protocol.AbstractProtocol"]], "abstractstochasticseededprotocol (class in quapy.protocol)": [[3, "quapy.protocol.AbstractStochasticSeededProtocol"]], "acc_error() (in module quapy.error)": [[3, "quapy.error.acc_error"]], "acce() (in module quapy.error)": [[3, "quapy.error.acce"]], "adjusted_quantification() (in module quapy.functional)": [[3, "quapy.functional.adjusted_quantification"]], "ae() (in module quapy.error)": [[3, "quapy.error.ae"]], "app (class in quapy.protocol)": [[3, "quapy.protocol.APP"]], "argmin_prevalence() (in module quapy.functional)": [[3, "quapy.functional.argmin_prevalence"]], "artificialprevalenceprotocol (in module quapy.protocol)": [[3, "quapy.protocol.ArtificialPrevalenceProtocol"]], "as_binary_prevalence() (in module quapy.functional)": [[3, "quapy.functional.as_binary_prevalence"]], "best_model() (quapy.model_selection.gridsearchq method)": [[3, "quapy.model_selection.GridSearchQ.best_model"]], "binary_bias_bins() (in module quapy.plot)": [[3, "quapy.plot.binary_bias_bins"]], "binary_bias_global() (in module quapy.plot)": [[3, "quapy.plot.binary_bias_global"]], "binary_diagonal() (in module quapy.plot)": [[3, "quapy.plot.binary_diagonal"]], "brokenbar_supremacy_by_drift() (in module quapy.plot)": [[3, "quapy.plot.brokenbar_supremacy_by_drift"]], "check_prevalence_vector() (in module quapy.functional)": [[3, "quapy.functional.check_prevalence_vector"]], "collator() (quapy.protocol.abstractstochasticseededprotocol method)": [[3, "quapy.protocol.AbstractStochasticSeededProtocol.collator"]], "configstatus (class in quapy.model_selection)": [[3, "quapy.model_selection.ConfigStatus"]], "create_if_not_exist() (in module quapy.util)": [[3, "quapy.util.create_if_not_exist"]], "create_parent_dir() (in module quapy.util)": [[3, "quapy.util.create_parent_dir"]], "cross_val_predict() (in module quapy.model_selection)": [[3, "quapy.model_selection.cross_val_predict"]], "domainmixer (class in quapy.protocol)": [[3, "quapy.protocol.DomainMixer"]], "download_file() (in module quapy.util)": [[3, "quapy.util.download_file"]], "download_file_if_not_exists() (in module quapy.util)": [[3, "quapy.util.download_file_if_not_exists"]], "earlystop (class in quapy.util)": [[3, "quapy.util.EarlyStop"]], "error (quapy.model_selection.status attribute)": [[3, "quapy.model_selection.Status.ERROR"]], "error_by_drift() (in module quapy.plot)": [[3, "quapy.plot.error_by_drift"]], "evaluate() (in module quapy.evaluation)": [[3, "quapy.evaluation.evaluate"]], "evaluate_on_samples() (in module quapy.evaluation)": [[3, "quapy.evaluation.evaluate_on_samples"]], "evaluation_report() (in module quapy.evaluation)": [[3, "quapy.evaluation.evaluation_report"]], "expand_grid() (in module quapy.model_selection)": [[3, "quapy.model_selection.expand_grid"]], "f1_error() (in module quapy.error)": [[3, "quapy.error.f1_error"]], "f1e() (in module quapy.error)": [[3, "quapy.error.f1e"]], "failed() (quapy.model_selection.configstatus method)": [[3, "quapy.model_selection.ConfigStatus.failed"]], "fit() (quapy.model_selection.gridsearchq method)": [[3, "quapy.model_selection.GridSearchQ.fit"]], "from_name() (in module quapy.error)": [[3, "quapy.error.from_name"]], "get_collator() (quapy.protocol.onlabelledcollectionprotocol class method)": [[3, "quapy.protocol.OnLabelledCollectionProtocol.get_collator"]], "get_divergence() (in module quapy.functional)": [[3, "quapy.functional.get_divergence"]], "get_labelled_collection() (quapy.protocol.onlabelledcollectionprotocol method)": [[3, "quapy.protocol.OnLabelledCollectionProtocol.get_labelled_collection"]], "get_nprevpoints_approximation() (in module quapy.functional)": [[3, "quapy.functional.get_nprevpoints_approximation"]], "get_params() (quapy.model_selection.gridsearchq method)": [[3, "quapy.model_selection.GridSearchQ.get_params"]], "get_quapy_home() (in module quapy.util)": [[3, "quapy.util.get_quapy_home"]], "gridsearchq (class in quapy.model_selection)": [[3, "quapy.model_selection.GridSearchQ"]], "group_params() (in module quapy.model_selection)": [[3, "quapy.model_selection.group_params"]], "hellingerdistance() (in module quapy.functional)": [[3, "quapy.functional.HellingerDistance"]], "invalid (quapy.model_selection.status attribute)": [[3, "quapy.model_selection.Status.INVALID"]], "iterateprotocol (class in quapy.protocol)": [[3, "quapy.protocol.IterateProtocol"]], "kld() (in module quapy.error)": [[3, "quapy.error.kld"]], "linear_search() (in module quapy.functional)": [[3, "quapy.functional.linear_search"]], "mae() (in module quapy.error)": [[3, "quapy.error.mae"]], "map_parallel() (in module quapy.util)": [[3, "quapy.util.map_parallel"]], "mean_absolute_error() (in module quapy.error)": [[3, "quapy.error.mean_absolute_error"]], "mean_normalized_absolute_error() (in module quapy.error)": [[3, "quapy.error.mean_normalized_absolute_error"]], "mean_normalized_relative_absolute_error() (in module quapy.error)": [[3, "quapy.error.mean_normalized_relative_absolute_error"]], "mean_relative_absolute_error() (in module quapy.error)": [[3, "quapy.error.mean_relative_absolute_error"]], "mkld() (in module quapy.error)": [[3, "quapy.error.mkld"]], "mnae() (in module quapy.error)": [[3, "quapy.error.mnae"]], "mnkld() (in module quapy.error)": [[3, "quapy.error.mnkld"]], "mnrae() (in module quapy.error)": [[3, "quapy.error.mnrae"]], "module": [[3, "module-quapy"], [3, "module-quapy.error"], [3, "module-quapy.evaluation"], [3, "module-quapy.functional"], [3, "module-quapy.model_selection"], [3, "module-quapy.plot"], [3, "module-quapy.protocol"], [3, "module-quapy.util"]], "mrae() (in module quapy.error)": [[3, "quapy.error.mrae"]], "mse() (in module quapy.error)": [[3, "quapy.error.mse"]], "nae() (in module quapy.error)": [[3, "quapy.error.nae"]], "naturalprevalenceprotocol (in module quapy.protocol)": [[3, "quapy.protocol.NaturalPrevalenceProtocol"]], "nkld() (in module quapy.error)": [[3, "quapy.error.nkld"]], "normalize_prevalence() (in module quapy.functional)": [[3, "quapy.functional.normalize_prevalence"]], "normalized_absolute_error() (in module quapy.error)": [[3, "quapy.error.normalized_absolute_error"]], "normalized_relative_absolute_error() (in module quapy.error)": [[3, "quapy.error.normalized_relative_absolute_error"]], "npp (class in quapy.protocol)": [[3, "quapy.protocol.NPP"]], "nrae() (in module quapy.error)": [[3, "quapy.error.nrae"]], "num_prevalence_combinations() (in module quapy.functional)": [[3, "quapy.functional.num_prevalence_combinations"]], "on_preclassified_instances() (quapy.protocol.onlabelledcollectionprotocol method)": [[3, "quapy.protocol.OnLabelledCollectionProtocol.on_preclassified_instances"]], "onlabelledcollectionprotocol (class in quapy.protocol)": [[3, "quapy.protocol.OnLabelledCollectionProtocol"]], "optim_minimize() (in module quapy.functional)": [[3, "quapy.functional.optim_minimize"]], "parallel() (in module quapy.util)": [[3, "quapy.util.parallel"]], "pickled_resource() (in module quapy.util)": [[3, "quapy.util.pickled_resource"]], "prediction() (in module quapy.evaluation)": [[3, "quapy.evaluation.prediction"]], "prevalence_from_labels() (in module quapy.functional)": [[3, "quapy.functional.prevalence_from_labels"]], "prevalence_from_probabilities() (in module quapy.functional)": [[3, "quapy.functional.prevalence_from_probabilities"]], "prevalence_grid() (quapy.protocol.app method)": [[3, "quapy.protocol.APP.prevalence_grid"]], "prevalence_linspace() (in module quapy.functional)": [[3, "quapy.functional.prevalence_linspace"]], "quantify() (quapy.model_selection.gridsearchq method)": [[3, "quapy.model_selection.GridSearchQ.quantify"]], "quapy": [[3, "module-quapy"]], "quapy.error": [[3, "module-quapy.error"]], "quapy.evaluation": [[3, "module-quapy.evaluation"]], "quapy.functional": [[3, "module-quapy.functional"]], "quapy.model_selection": [[3, "module-quapy.model_selection"]], "quapy.plot": [[3, "module-quapy.plot"]], "quapy.protocol": [[3, "module-quapy.protocol"]], "quapy.util": [[3, "module-quapy.util"]], "rae() (in module quapy.error)": [[3, "quapy.error.rae"]], "random_state (quapy.protocol.abstractstochasticseededprotocol property)": [[3, "quapy.protocol.AbstractStochasticSeededProtocol.random_state"]], "relative_absolute_error() (in module quapy.error)": [[3, "quapy.error.relative_absolute_error"]], "return_types (quapy.protocol.onlabelledcollectionprotocol attribute)": [[3, "quapy.protocol.OnLabelledCollectionProtocol.RETURN_TYPES"]], "sample() (quapy.protocol.abstractstochasticseededprotocol method)": [[3, "quapy.protocol.AbstractStochasticSeededProtocol.sample"]], "sample() (quapy.protocol.app method)": [[3, "quapy.protocol.APP.sample"]], "sample() (quapy.protocol.domainmixer method)": [[3, "quapy.protocol.DomainMixer.sample"]], "sample() (quapy.protocol.npp method)": [[3, "quapy.protocol.NPP.sample"]], "sample() (quapy.protocol.upp method)": [[3, "quapy.protocol.UPP.sample"]], "samples_parameters() (quapy.protocol.abstractstochasticseededprotocol method)": [[3, "quapy.protocol.AbstractStochasticSeededProtocol.samples_parameters"]], "samples_parameters() (quapy.protocol.app method)": [[3, "quapy.protocol.APP.samples_parameters"]], "samples_parameters() (quapy.protocol.domainmixer method)": [[3, "quapy.protocol.DomainMixer.samples_parameters"]], "samples_parameters() (quapy.protocol.npp method)": [[3, "quapy.protocol.NPP.samples_parameters"]], "samples_parameters() (quapy.protocol.upp method)": [[3, "quapy.protocol.UPP.samples_parameters"]], "save_text_file() (in module quapy.util)": [[3, "quapy.util.save_text_file"]], "se() (in module quapy.error)": [[3, "quapy.error.se"]], "set_params() (quapy.model_selection.gridsearchq method)": [[3, "quapy.model_selection.GridSearchQ.set_params"]], "smooth() (in module quapy.error)": [[3, "quapy.error.smooth"]], "status (class in quapy.model_selection)": [[3, "quapy.model_selection.Status"]], "strprev() (in module quapy.functional)": [[3, "quapy.functional.strprev"]], "success (quapy.model_selection.status attribute)": [[3, "quapy.model_selection.Status.SUCCESS"]], "success() (quapy.model_selection.configstatus method)": [[3, "quapy.model_selection.ConfigStatus.success"]], "temp_seed() (in module quapy.util)": [[3, "quapy.util.temp_seed"]], "timeout (quapy.model_selection.status attribute)": [[3, "quapy.model_selection.Status.TIMEOUT"]], "timeout() (in module quapy.util)": [[3, "quapy.util.timeout"]], "topsoedistance() (in module quapy.functional)": [[3, "quapy.functional.TopsoeDistance"]], "total() (quapy.protocol.abstractprotocol method)": [[3, "quapy.protocol.AbstractProtocol.total"]], "total() (quapy.protocol.app method)": [[3, "quapy.protocol.APP.total"]], "total() (quapy.protocol.domainmixer method)": [[3, "quapy.protocol.DomainMixer.total"]], "total() (quapy.protocol.iterateprotocol method)": [[3, "quapy.protocol.IterateProtocol.total"]], "total() (quapy.protocol.npp method)": [[3, "quapy.protocol.NPP.total"]], "total() (quapy.protocol.upp method)": [[3, "quapy.protocol.UPP.total"]], "uniform_prevalence_sampling() (in module quapy.functional)": [[3, "quapy.functional.uniform_prevalence_sampling"]], "uniform_simplex_sampling() (in module quapy.functional)": [[3, "quapy.functional.uniform_simplex_sampling"]], "uniformprevalenceprotocol (in module quapy.protocol)": [[3, "quapy.protocol.UniformPrevalenceProtocol"]], "upp (class in quapy.protocol)": [[3, "quapy.protocol.UPP"]]}, "objects": {"": [[3, 0, 0, "-", "quapy"]], "quapy": [[4, 0, 0, "-", "classification"], [5, 0, 0, "-", "data"], [3, 0, 0, "-", "error"], [3, 0, 0, "-", "evaluation"], [3, 0, 0, "-", "functional"], [6, 0, 0, "-", "method"], [3, 0, 0, "-", "model_selection"], [3, 0, 0, "-", "plot"], [3, 0, 0, "-", "protocol"], [3, 0, 0, "-", "util"]], "quapy.classification": [[4, 0, 0, "-", "calibration"], [4, 0, 0, "-", "methods"], [4, 0, 0, "-", "neural"], [4, 0, 0, "-", "svmperf"]], "quapy.classification.calibration": [[4, 1, 1, "", "BCTSCalibration"], [4, 1, 1, "", "NBVSCalibration"], [4, 1, 1, "", "RecalibratedProbabilisticClassifier"], [4, 1, 1, "", "RecalibratedProbabilisticClassifierBase"], [4, 1, 1, "", "TSCalibration"], [4, 1, 1, "", "VSCalibration"]], "quapy.classification.calibration.RecalibratedProbabilisticClassifierBase": [[4, 2, 1, "", "classes_"], [4, 3, 1, "", "fit"], [4, 3, 1, "", "fit_cv"], [4, 3, 1, "", "fit_tr_val"], [4, 3, 1, "", "predict"], [4, 3, 1, "", "predict_proba"]], "quapy.classification.methods": [[4, 1, 1, "", "LowRankLogisticRegression"]], "quapy.classification.methods.LowRankLogisticRegression": [[4, 3, 1, "", "fit"], [4, 3, 1, "", "get_params"], [4, 3, 1, "", "predict"], [4, 3, 1, "", "predict_proba"], [4, 3, 1, "", "set_params"], [4, 3, 1, "", "transform"]], "quapy.classification.neural": [[4, 1, 1, "", "CNNnet"], [4, 1, 1, "", "LSTMnet"], [4, 1, 1, "", "NeuralClassifierTrainer"], [4, 1, 1, "", "TextClassifierNet"], [4, 1, 1, "", "TorchDataset"]], "quapy.classification.neural.CNNnet": [[4, 3, 1, "", "document_embedding"], [4, 3, 1, "", "get_params"], [4, 2, 1, "", "vocabulary_size"]], "quapy.classification.neural.LSTMnet": [[4, 3, 1, "", "document_embedding"], [4, 3, 1, "", "get_params"], [4, 2, 1, "", "vocabulary_size"]], "quapy.classification.neural.NeuralClassifierTrainer": [[4, 2, 1, "", "device"], [4, 3, 1, "", "fit"], [4, 3, 1, "", "get_params"], [4, 3, 1, "", "predict"], [4, 3, 1, "", "predict_proba"], [4, 3, 1, "", "reset_net_params"], [4, 3, 1, "", "set_params"], [4, 3, 1, "", "transform"]], "quapy.classification.neural.TextClassifierNet": [[4, 3, 1, "", "dimensions"], [4, 3, 1, "", "document_embedding"], [4, 3, 1, "", "forward"], [4, 3, 1, "", "get_params"], [4, 3, 1, "", "predict_proba"], [4, 2, 1, "", "vocabulary_size"], [4, 3, 1, "", "xavier_uniform"]], "quapy.classification.neural.TorchDataset": [[4, 3, 1, "", "asDataloader"]], "quapy.classification.svmperf": [[4, 1, 1, "", "SVMperf"]], "quapy.classification.svmperf.SVMperf": [[4, 3, 1, "", "decision_function"], [4, 3, 1, "", "fit"], [4, 3, 1, "", "predict"], [4, 4, 1, "", "valid_losses"]], "quapy.data": [[5, 0, 0, "-", "base"], [5, 0, 0, "-", "datasets"], [5, 0, 0, "-", "preprocessing"], [5, 0, 0, "-", "reader"]], "quapy.data.base": [[5, 1, 1, "", "Dataset"], [5, 1, 1, "", "LabelledCollection"]], "quapy.data.base.Dataset": [[5, 3, 1, "", "SplitStratified"], [5, 2, 1, "", "binary"], [5, 2, 1, "", "classes_"], [5, 3, 1, "", "kFCV"], [5, 3, 1, "", "load"], [5, 2, 1, "", "n_classes"], [5, 3, 1, "", "reduce"], [5, 3, 1, "", "stats"], [5, 2, 1, "", "train_test"], [5, 2, 1, "", "vocabulary_size"]], "quapy.data.base.LabelledCollection": [[5, 2, 1, "", "X"], [5, 2, 1, "", "Xp"], [5, 2, 1, "", "Xy"], [5, 2, 1, "", "binary"], [5, 3, 1, "", "counts"], [5, 3, 1, "", "join"], [5, 3, 1, "", "kFCV"], [5, 3, 1, "", "load"], [5, 2, 1, "", "n_classes"], [5, 2, 1, "", "p"], [5, 3, 1, "", "prevalence"], [5, 3, 1, "", "sampling"], [5, 3, 1, "", "sampling_from_index"], [5, 3, 1, "", "sampling_index"], [5, 3, 1, "", "split_random"], [5, 3, 1, "", "split_stratified"], [5, 3, 1, "", "stats"], [5, 3, 1, "", "uniform_sampling"], [5, 3, 1, "", "uniform_sampling_index"], [5, 2, 1, "", "y"]], "quapy.data.datasets": [[5, 5, 1, "", "fetch_IFCB"], [5, 5, 1, "", "fetch_UCIBinaryDataset"], [5, 5, 1, "", "fetch_UCIBinaryLabelledCollection"], [5, 5, 1, "", "fetch_UCIMulticlassDataset"], [5, 5, 1, "", "fetch_UCIMulticlassLabelledCollection"], [5, 5, 1, "", "fetch_lequa2022"], [5, 5, 1, "", "fetch_reviews"], [5, 5, 1, "", "fetch_twitter"], [5, 5, 1, "", "warn"]], "quapy.data.preprocessing": [[5, 1, 1, "", "IndexTransformer"], [5, 5, 1, "", "index"], [5, 5, 1, "", "reduce_columns"], [5, 5, 1, "", "standardize"], [5, 5, 1, "", "text2tfidf"]], "quapy.data.preprocessing.IndexTransformer": [[5, 3, 1, "", "add_word"], [5, 3, 1, "", "fit"], [5, 3, 1, "", "fit_transform"], [5, 3, 1, "", "transform"], [5, 3, 1, "", "vocabulary_size"]], "quapy.data.reader": [[5, 5, 1, "", "binarize"], [5, 5, 1, "", "from_csv"], [5, 5, 1, "", "from_sparse"], [5, 5, 1, "", "from_text"], [5, 5, 1, "", "reindex_labels"]], "quapy.error": [[3, 5, 1, "", "absolute_error"], [3, 5, 1, "", "acc_error"], [3, 5, 1, "", "acce"], [3, 5, 1, "", "ae"], [3, 5, 1, "", "f1_error"], [3, 5, 1, "", "f1e"], [3, 5, 1, "", "from_name"], [3, 5, 1, "", "kld"], [3, 5, 1, "", "mae"], [3, 5, 1, "", "mean_absolute_error"], [3, 5, 1, "", "mean_normalized_absolute_error"], [3, 5, 1, "", "mean_normalized_relative_absolute_error"], [3, 5, 1, "", "mean_relative_absolute_error"], [3, 5, 1, "", "mkld"], [3, 5, 1, "", "mnae"], [3, 5, 1, "", "mnkld"], [3, 5, 1, "", "mnrae"], [3, 5, 1, "", "mrae"], [3, 5, 1, "", "mse"], [3, 5, 1, "", "nae"], [3, 5, 1, "", "nkld"], [3, 5, 1, "", "normalized_absolute_error"], [3, 5, 1, "", "normalized_relative_absolute_error"], [3, 5, 1, "", "nrae"], [3, 5, 1, "", "rae"], [3, 5, 1, "", "relative_absolute_error"], [3, 5, 1, "", "se"], [3, 5, 1, "", "smooth"]], "quapy.evaluation": [[3, 5, 1, "", "evaluate"], [3, 5, 1, "", "evaluate_on_samples"], [3, 5, 1, "", "evaluation_report"], [3, 5, 1, "", "prediction"]], "quapy.functional": [[3, 5, 1, "", "HellingerDistance"], [3, 5, 1, "", "TopsoeDistance"], [3, 5, 1, "", "adjusted_quantification"], [3, 5, 1, "", "argmin_prevalence"], [3, 5, 1, "", "as_binary_prevalence"], [3, 5, 1, "", "check_prevalence_vector"], [3, 5, 1, "", "get_divergence"], [3, 5, 1, "", "get_nprevpoints_approximation"], [3, 5, 1, "", "linear_search"], [3, 5, 1, "", "normalize_prevalence"], [3, 5, 1, "", "num_prevalence_combinations"], [3, 5, 1, "", "optim_minimize"], [3, 5, 1, "", "prevalence_from_labels"], [3, 5, 1, "", "prevalence_from_probabilities"], [3, 5, 1, "", "prevalence_linspace"], [3, 5, 1, "", "strprev"], [3, 5, 1, "", "uniform_prevalence_sampling"], [3, 5, 1, "", "uniform_simplex_sampling"]], "quapy.method": [[6, 0, 0, "-", "_kdey"], [6, 0, 0, "-", "_neural"], [6, 0, 0, "-", "_threshold_optim"], [6, 0, 0, "-", "aggregative"], [6, 0, 0, "-", "base"], [6, 0, 0, "-", "meta"], [6, 0, 0, "-", "non_aggregative"]], "quapy.method._kdey": [[6, 1, 1, "", "KDEBase"], [6, 1, 1, "", "KDEyCS"], [6, 1, 1, "", "KDEyHD"], [6, 1, 1, "", "KDEyML"]], "quapy.method._kdey.KDEBase": [[6, 4, 1, "", "BANDWIDTH_METHOD"], [6, 3, 1, "", "get_kde_function"], [6, 3, 1, "", "get_mixture_components"], [6, 3, 1, "", "pdf"]], "quapy.method._kdey.KDEyCS": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"], [6, 3, 1, "", "gram_matrix_mix_sum"]], "quapy.method._kdey.KDEyHD": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method._kdey.KDEyML": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method._neural": [[6, 1, 1, "", "QuaNetModule"], [6, 1, 1, "", "QuaNetTrainer"], [6, 5, 1, "", "mae_loss"]], "quapy.method._neural.QuaNetModule": [[6, 2, 1, "", "device"], [6, 3, 1, "", "forward"]], "quapy.method._neural.QuaNetTrainer": [[6, 2, 1, "", "classes_"], [6, 3, 1, "", "clean_checkpoint"], [6, 3, 1, "", "clean_checkpoint_dir"], [6, 3, 1, "", "fit"], [6, 3, 1, "", "get_params"], [6, 3, 1, "", "quantify"], [6, 3, 1, "", "set_params"]], "quapy.method._threshold_optim": [[6, 1, 1, "", "MAX"], [6, 1, 1, "", "MS"], [6, 1, 1, "", "MS2"], [6, 1, 1, "", "T50"], [6, 1, 1, "", "ThresholdOptimization"], [6, 1, 1, "", "X"]], "quapy.method._threshold_optim.MAX": [[6, 3, 1, "", "condition"]], "quapy.method._threshold_optim.MS": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"], [6, 3, 1, "", "condition"]], "quapy.method._threshold_optim.MS2": [[6, 3, 1, "", "discard"]], "quapy.method._threshold_optim.T50": [[6, 3, 1, "", "condition"]], "quapy.method._threshold_optim.ThresholdOptimization": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregate_with_threshold"], [6, 3, 1, "", "aggregation_fit"], [6, 3, 1, "", "condition"], [6, 3, 1, "", "discard"]], "quapy.method._threshold_optim.X": [[6, 3, 1, "", "condition"]], "quapy.method.aggregative": [[6, 1, 1, "", "ACC"], [6, 4, 1, "", "AdjustedClassifyAndCount"], [6, 1, 1, "", "AggregativeCrispQuantifier"], [6, 1, 1, "", "AggregativeMedianEstimator"], [6, 1, 1, "", "AggregativeQuantifier"], [6, 1, 1, "", "AggregativeSoftQuantifier"], [6, 1, 1, "", "BinaryAggregativeQuantifier"], [6, 1, 1, "", "CC"], [6, 4, 1, "", "ClassifyAndCount"], [6, 1, 1, "", "DMy"], [6, 4, 1, "", "DistributionMatchingY"], [6, 1, 1, "", "DyS"], [6, 1, 1, "", "EMQ"], [6, 4, 1, "", "ExpectationMaximizationQuantifier"], [6, 1, 1, "", "HDy"], [6, 4, 1, "", "HellingerDistanceY"], [6, 1, 1, "", "OneVsAllAggregative"], [6, 1, 1, "", "PACC"], [6, 1, 1, "", "PCC"], [6, 4, 1, "", "ProbabilisticAdjustedClassifyAndCount"], [6, 4, 1, "", "ProbabilisticClassifyAndCount"], [6, 4, 1, "", "SLD"], [6, 1, 1, "", "SMM"], [6, 5, 1, "", "newELM"], [6, 5, 1, "", "newSVMAE"], [6, 5, 1, "", "newSVMKLD"], [6, 5, 1, "", "newSVMQ"], [6, 5, 1, "", "newSVMRAE"]], "quapy.method.aggregative.ACC": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"], [6, 3, 1, "", "getPteCondEstim"], [6, 3, 1, "", "solve_adjustment"]], "quapy.method.aggregative.AggregativeMedianEstimator": [[6, 3, 1, "", "fit"], [6, 3, 1, "", "get_params"], [6, 3, 1, "", "quantify"], [6, 3, 1, "", "set_params"]], "quapy.method.aggregative.AggregativeQuantifier": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"], [6, 2, 1, "", "classes_"], [6, 2, 1, "", "classifier"], [6, 3, 1, "", "classifier_fit_predict"], [6, 3, 1, "", "classify"], [6, 3, 1, "", "fit"], [6, 3, 1, "", "quantify"], [6, 2, 1, "", "val_split"], [6, 4, 1, "", "val_split_"]], "quapy.method.aggregative.BinaryAggregativeQuantifier": [[6, 3, 1, "", "fit"], [6, 2, 1, "", "neg_label"], [6, 2, 1, "", "pos_label"]], "quapy.method.aggregative.CC": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method.aggregative.DMy": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method.aggregative.DyS": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method.aggregative.EMQ": [[6, 3, 1, "", "EM"], [6, 3, 1, "", "EMQ_BCTS"], [6, 4, 1, "", "EPSILON"], [6, 4, 1, "", "MAX_ITER"], [6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"], [6, 3, 1, "", "classify"], [6, 3, 1, "", "predict_proba"]], "quapy.method.aggregative.HDy": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method.aggregative.OneVsAllAggregative": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "classify"]], "quapy.method.aggregative.PACC": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"], [6, 3, 1, "", "getPteCondEstim"]], "quapy.method.aggregative.PCC": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method.aggregative.SMM": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method.base": [[6, 1, 1, "", "BaseQuantifier"], [6, 1, 1, "", "BinaryQuantifier"], [6, 1, 1, "", "OneVsAll"], [6, 1, 1, "", "OneVsAllGeneric"], [6, 5, 1, "", "newOneVsAll"]], "quapy.method.base.BaseQuantifier": [[6, 3, 1, "", "fit"], [6, 3, 1, "", "quantify"]], "quapy.method.base.OneVsAllGeneric": [[6, 2, 1, "", "classes_"], [6, 3, 1, "", "fit"], [6, 3, 1, "", "quantify"]], "quapy.method.meta": [[6, 5, 1, "", "EACC"], [6, 5, 1, "", "ECC"], [6, 5, 1, "", "EEMQ"], [6, 5, 1, "", "EHDy"], [6, 5, 1, "", "EPACC"], [6, 1, 1, "", "Ensemble"], [6, 1, 1, "", "MedianEstimator"], [6, 1, 1, "", "MedianEstimator2"], [6, 5, 1, "", "ensembleFactory"], [6, 5, 1, "", "get_probability_distribution"]], "quapy.method.meta.Ensemble": [[6, 4, 1, "", "VALID_POLICIES"], [6, 2, 1, "", "aggregative"], [6, 3, 1, "", "fit"], [6, 3, 1, "", "get_params"], [6, 2, 1, "", "probabilistic"], [6, 3, 1, "", "quantify"], [6, 3, 1, "", "set_params"]], "quapy.method.meta.MedianEstimator": [[6, 3, 1, "", "fit"], [6, 3, 1, "", "get_params"], [6, 3, 1, "", "quantify"], [6, 3, 1, "", "set_params"]], "quapy.method.meta.MedianEstimator2": [[6, 3, 1, "", "fit"], [6, 3, 1, "", "get_params"], [6, 3, 1, "", "quantify"], [6, 3, 1, "", "set_params"]], "quapy.method.non_aggregative": [[6, 1, 1, "", "DMx"], [6, 4, 1, "", "DistributionMatchingX"], [6, 1, 1, "", "MaximumLikelihoodPrevalenceEstimation"]], "quapy.method.non_aggregative.DMx": [[6, 3, 1, "", "HDx"], [6, 3, 1, "", "fit"], [6, 3, 1, "", "quantify"]], "quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation": [[6, 3, 1, "", "fit"], [6, 3, 1, "", "quantify"]], "quapy.model_selection": [[3, 1, 1, "", "ConfigStatus"], [3, 1, 1, "", "GridSearchQ"], [3, 1, 1, "", "Status"], [3, 5, 1, "", "cross_val_predict"], [3, 5, 1, "", "expand_grid"], [3, 5, 1, "", "group_params"]], "quapy.model_selection.ConfigStatus": [[3, 3, 1, "", "failed"], [3, 3, 1, "", "success"]], "quapy.model_selection.GridSearchQ": [[3, 3, 1, "", "best_model"], [3, 3, 1, "", "fit"], [3, 3, 1, "", "get_params"], [3, 3, 1, "", "quantify"], [3, 3, 1, "", "set_params"]], "quapy.model_selection.Status": [[3, 4, 1, "", "ERROR"], [3, 4, 1, "", "INVALID"], [3, 4, 1, "", "SUCCESS"], [3, 4, 1, "", "TIMEOUT"]], "quapy.plot": [[3, 5, 1, "", "binary_bias_bins"], [3, 5, 1, "", "binary_bias_global"], [3, 5, 1, "", "binary_diagonal"], [3, 5, 1, "", "brokenbar_supremacy_by_drift"], [3, 5, 1, "", "error_by_drift"]], "quapy.protocol": [[3, 1, 1, "", "APP"], [3, 1, 1, "", "AbstractProtocol"], [3, 1, 1, "", "AbstractStochasticSeededProtocol"], [3, 4, 1, "", "ArtificialPrevalenceProtocol"], [3, 1, 1, "", "DomainMixer"], [3, 1, 1, "", "IterateProtocol"], [3, 1, 1, "", "NPP"], [3, 4, 1, "", "NaturalPrevalenceProtocol"], [3, 1, 1, "", "OnLabelledCollectionProtocol"], [3, 1, 1, "", "UPP"], [3, 4, 1, "", "UniformPrevalenceProtocol"]], "quapy.protocol.APP": [[3, 3, 1, "", "prevalence_grid"], [3, 3, 1, "", "sample"], [3, 3, 1, "", "samples_parameters"], [3, 3, 1, "", "total"]], "quapy.protocol.AbstractProtocol": [[3, 3, 1, "", "total"]], "quapy.protocol.AbstractStochasticSeededProtocol": [[3, 3, 1, "", "collator"], [3, 2, 1, "", "random_state"], [3, 3, 1, "", "sample"], [3, 3, 1, "", "samples_parameters"]], "quapy.protocol.DomainMixer": [[3, 3, 1, "", "sample"], [3, 3, 1, "", "samples_parameters"], [3, 3, 1, "", "total"]], "quapy.protocol.IterateProtocol": [[3, 3, 1, "", "total"]], "quapy.protocol.NPP": [[3, 3, 1, "", "sample"], [3, 3, 1, "", "samples_parameters"], [3, 3, 1, "", "total"]], "quapy.protocol.OnLabelledCollectionProtocol": [[3, 4, 1, "", "RETURN_TYPES"], [3, 3, 1, "", "get_collator"], [3, 3, 1, "", "get_labelled_collection"], [3, 3, 1, "", "on_preclassified_instances"]], "quapy.protocol.UPP": [[3, 3, 1, "", "sample"], [3, 3, 1, "", "samples_parameters"], [3, 3, 1, "", "total"]], "quapy.util": [[3, 1, 1, "", "EarlyStop"], [3, 5, 1, "", "create_if_not_exist"], [3, 5, 1, "", "create_parent_dir"], [3, 5, 1, "", "download_file"], [3, 5, 1, "", "download_file_if_not_exists"], [3, 5, 1, "", "get_quapy_home"], [3, 5, 1, "", "map_parallel"], [3, 5, 1, "", "parallel"], [3, 5, 1, "", "pickled_resource"], [3, 5, 1, "", "save_text_file"], [3, 5, 1, "", "temp_seed"], [3, 5, 1, "", "timeout"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "property", "Python property"], "3": ["py", "method", "Python method"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:property", "3": "py:method", "4": "py:attribute", "5": "py:function"}, "terms": {"": [3, 4, 5, 6], "0": [3, 4, 5, 6], "0001": 6, "001": [4, 6], "005": 3, "01": [3, 4, 6], "05": [3, 6], "063": 5, "08": 3, "081": 5, "1": [3, 4, 5, 6], "10": [3, 4, 6], "100": [3, 4, 5, 6], "1000": [5, 6], "10000": [3, 6], "10036244": 5, "1024": 6, "11": 3, "110": 6, "1145": 6, "12": 4, "13": 4, "15": [3, 5], "19": 5, "1e": [3, 4, 6], "2": [3, 5, 6], "20": [3, 6], "200": 4, "2006": 6, "2008": 6, "2013": 6, "2015": [4, 6], "2016": [5, 6], "2017": [5, 6], "2018": 5, "2019": [5, 6], "2020": 4, "2021": 6, "2022": [5, 6], "21": 3, "21591": 5, "22": [4, 5], "222": 4, "23": 4, "232": 4, "24": 4, "25": [3, 4, 6], "256": 4, "26": 4, "27": 4, "27th": 5, "28": 5, "2dx": 6, "2frac": 3, "2nd": 6, "2t": 3, "2tp": 3, "3": [3, 4, 5, 6], "30": 6, "300": 4, "3219819": 6, "3220059": 6, "3227": 3, "33": 3, "34": [5, 6], "3821": 5, "4": [3, 5], "40": 6, "4403": 5, "45": 5, "5": [3, 4, 5, 6], "50": [3, 6], "500": 6, "512": [4, 6], "5fcvx2": 5, "6": 5, "64": [4, 6], "66": 6, "67": 3, "7": [3, 4, 6], "75": 3, "8": [5, 6], "87": 5, "9": 3, "90": 3, "919": 5, "937": 5, "95": 3, "99": 3, "A": [3, 4, 5, 6], "By": 3, "For": [3, 5, 6], "If": [3, 5, 6], "In": [3, 4, 5, 6], "It": [3, 5], "No": [4, 6], "On": 6, "One": 6, "The": [3, 4, 5, 6], "These": [4, 6], "To": 5, "_": [3, 5, 6], "__": 6, "_f": 6, "_i": 6, "_ifcb": 5, "_kdei": 6, "_lequa2022": 5, "_neural": 6, "_threshold_optim": 6, "abc": 6, "about": [3, 5, 6], "abov": 3, "absolut": [3, 6], "absolute_error": [1, 2, 3], "abstent": 4, "abstract": [3, 4, 5, 6], "abstractprotocol": [1, 2, 3, 5], "abstractstochasticseededprotocol": [1, 2, 3], "acc": [1, 2, 3, 6], "acc_error": [1, 2, 3], "access": [5, 6], "accommod": 3, "accord": [3, 4, 5, 6], "accordingli": 6, "accuraci": [3, 6], "achiev": 6, "acm": [5, 6], "across": [3, 6], "act": 3, "actual": [5, 6], "ad": 3, "adapt": [3, 4], "add": [3, 5], "add_word": [1, 3, 5], "addit": 3, "adher": 3, "adjust": [3, 6], "adjusted_quantif": [1, 2, 3], "adjustedclassifyandcount": [1, 3, 6], "admit": 6, "adopt": 5, "advanc": 3, "advantag": 6, "ae": [1, 2, 3], "after": [3, 6], "afterward": [4, 6], "again": 3, "aggr_speedup": 3, "aggreg": [1, 2, 3], "aggregate_with_threshold": [1, 3, 6], "aggregation_fit": [1, 3, 6], "aggregative_method": [], "aggregativecrispquantifi": [1, 3, 6], "aggregativemedianestim": [1, 3, 6], "aggregativequantifi": [1, 3, 6], "aggregativesoftquantifi": [1, 3, 6], "aka": [5, 6], "akin": [3, 6], "al": [4, 5, 6], "alaiz": 6, "alegr": 6, "alexandari": [4, 6], "algorithm": [3, 5, 6], "alia": [3, 5, 6], "all": [3, 4, 5, 6], "alloc": [3, 4], "allow": [3, 4, 5, 6], "along": [3, 6], "alpha": 6, "alpha_i": 6, "alreadi": [3, 6], "also": [3, 4, 6], "altern": [3, 6], "although": 6, "alwai": 6, "amount": 3, "an": [3, 4, 5, 6], "analysi": 5, "ancestor": 6, "ani": [3, 4, 5, 6], "anoth": [3, 6], "anotherdir": 3, "anyth": 6, "anywher": 3, "api": 1, "app": [1, 2, 3, 6], "appli": [3, 4, 5, 6], "applic": 6, "approach": 6, "approxim": [3, 4], "ar": [3, 4, 5, 6], "archiv": 5, "archive_filenam": 3, "arg": [3, 4, 5, 6], "argmax": 3, "argmin_preval": [1, 2, 3], "args_i": 3, "argument": [3, 5, 6], "around": [5, 6], "arrai": [3, 4, 5, 6], "artifici": 3, "artificialprevalenceprotocol": [1, 2, 3], "as_binary_preval": [1, 2, 3], "asarrai": 3, "asdataload": [1, 3, 4], "assert": 5, "assign": [3, 5], "associ": 3, "assum": 6, "assumpion": 6, "attach": 5, "attempt": 6, "attribut": 6, "author": 6, "auto": 3, "automat": 4, "av": 6, "avail": [4, 5, 6], "averag": [3, 5, 6], "avoid": 3, "ax": 6, "axi": 3, "b": [3, 5, 6], "backend": [3, 6], "balanc": 6, "band": 3, "bandwidth": 6, "bandwidth_method": [1, 3, 6], "bar": 3, "barranquero": [4, 6], "base": [1, 2, 3, 4], "base_method": [], "base_quantifi": 6, "base_quantifier_class": 6, "baseestim": [4, 6], "basequantifi": [1, 3, 6], "basic": [5, 6], "batch": 4, "batch_siz": 4, "batch_size_test": 4, "bct": [4, 6], "bctscalibr": [1, 3, 4], "bean": 5, "beat": [4, 6], "been": [3, 4, 5, 6], "befor": [3, 4, 5, 6], "beforehand": 3, "begin": 3, "behaviour": 3, "being": [3, 6], "belong": 6, "below": [3, 5], "benchmark": [], "best": [3, 4, 6], "best_epoch": 3, "best_model": [1, 2, 3], "best_scor": 3, "better": 6, "between": [3, 4, 6], "bia": [3, 4, 6], "bidirect": 6, "bin": [3, 6], "binar": [1, 3, 5], "binari": [1, 3, 4, 5, 6], "binary_bias_bin": [1, 2, 3], "binary_bias_glob": [1, 2, 3], "binary_diagon": [1, 2, 3], "binary_quantifi": 6, "binaryaggregativequantifi": [1, 3, 6], "binaryquantifi": [1, 3, 6], "binom": 3, "block": 3, "boldsymbol": 6, "bool": [3, 6], "boolean": [3, 5, 6], "both": 5, "bound": [3, 6], "box": 3, "brief": 5, "bring": 6, "broken": 3, "brokenbar_supremacy_by_drift": [1, 2, 3], "buns": 6, "bypass": 6, "c": [3, 4, 5, 6], "calcul": 3, "calibr": [1, 2, 3], "calibratorfactori": 4, "call": [3, 5, 6], "callabl": [3, 5, 6], "can": [3, 5, 6], "cannot": 6, "care": 6, "carlo": 6, "carri": [3, 5, 6], "case": [3, 4, 5, 6], "castano": 5, "castro": 6, "categor": 5, "categori": 3, "cauchi": 6, "cc": [1, 3, 6], "cdf": 6, "cell": 6, "center": 6, "central": 3, "ch": 6, "chang": 5, "channel": 6, "characteriz": 5, "charg": [3, 5], "chart": 3, "check": [3, 5], "check_dataframe_format": [], "check_file_format": [], "check_prevalence_vector": [1, 2, 3], "checkpoint": [4, 6], "checkpointdir": 6, "checkpointnam": 6, "checkpointpath": 4, "child": 3, "choic": 6, "choos": 6, "chosen": 3, "class": [3, 4, 5, 6], "class2int": 5, "class_weight": 6, "classes_": [1, 3, 4, 5, 6], "classif": [1, 2, 3, 5, 6], "classif_posterior": 6, "classif_predict": 6, "classifi": [1, 3, 4, 6], "classification_fit": 6, "classifier_fit_predict": [1, 3, 6], "classifier_net": 4, "classifiermixin": 4, "classifyandcount": [1, 3, 6], "classmethod": [3, 5, 6], "classnam": 5, "classs": 3, "clean_checkpoint": [1, 3, 6], "clean_checkpoint_dir": [1, 3, 6], "clef": 5, "clip": 3, "clip_if_necessari": 3, "close": [3, 5, 6], "closest": 6, "cm": 3, "cnn": 6, "cnnnet": [1, 3, 4, 6], "code": 4, "codefram": 5, "codifi": 5, "col": 5, "collat": [1, 2, 3], "collect": [3, 4, 5, 6], "collet": 5, "color": 3, "colormap": 3, "column": [3, 5], "com": [1, 3, 5], "combin": [3, 6], "combinations_budget": 3, "come": [3, 5, 6], "common": 6, "compar": 3, "compat": 6, "competit": 5, "complement": 6, "complet": [3, 6], "compon": [3, 4, 6], "comput": [3, 6], "conceptu": 6, "condit": [1, 3, 6], "conduct": 3, "confer": [4, 5], "confid": 3, "configstatu": [1, 2, 3], "configur": [3, 6], "conform": 5, "connect": 6, "consecut": [3, 4, 5, 6], "consid": [3, 4, 5, 6], "consist": [3, 4, 5, 6], "constrain": [3, 5], "construct": 6, "consult": 6, "contain": [1, 3, 4, 5, 6], "contanin": 3, "content": 2, "context": 3, "control": 3, "conveni": 3, "converg": 6, "convert": [3, 4, 5, 6], "convolut": 4, "copi": [3, 5], "correct": [4, 6], "correctli": 3, "correspond": [5, 6], "count": [1, 3, 5, 6], "counter": 5, "countvector": 5, "covari": [5, 6], "cover": [3, 4], "coz": 5, "cpu": [4, 6], "creat": [3, 6], "create_if_not_exist": [1, 2, 3], "create_parent_dir": [1, 2, 3], "crip": 6, "crisp": [3, 6], "criteria": 5, "criterion": 6, "cross": [3, 4, 5, 6], "cross_val_predict": [1, 2, 3], "csr": 5, "csr_matrix": 5, "csv": 5, "cuda": [4, 6], "cumberson": 3, "current": [3, 4, 5, 6], "custom": [3, 5], "d": 6, "d_": 3, "dat": 4, "data": [1, 2, 3, 4, 6], "data_hom": 5, "datafram": 3, "dataload": 4, "datapoint": 6, "dataset": [1, 2, 3, 4, 6], "dataset_nam": 5, "deactiv": 3, "decaesteck": 6, "decai": 4, "decid": [3, 5], "decis": [3, 4, 6], "decision_funct": [1, 3, 4, 6], "decomposit": 4, "dedic": 5, "deep": [3, 6], "def": 3, "default": [3, 4, 5, 6], "defin": [3, 4, 5, 6], "degener": 6, "del": 5, "delai": 3, "delet": 4, "deliv": 6, "delta": 6, "denomin": 6, "dens": 6, "densiti": [3, 6], "depend": [3, 6], "describ": [3, 6], "descript": 5, "desir": [3, 5], "destin": 3, "detail": [4, 5, 6], "determin": 3, "determinist": 3, "devel": 5, "deviat": [3, 5], "devic": [1, 3, 4, 6], "df": [], "di": 6, "diagon": 3, "dict": [3, 5, 6], "dictionari": [3, 4, 5, 6], "differ": [3, 5, 6], "dij": 6, "dimens": [1, 3, 4, 5, 6], "dimension": [3, 4, 5, 6], "dir": [3, 6], "directori": [3, 4, 5, 6], "discard": [1, 3, 6], "discret": [3, 6], "disjoint": 4, "disk": [3, 5], "disntac": 6, "displai": [3, 4], "displaystyl": 3, "dissimilar": 6, "distanc": [3, 6], "distant": 3, "distribut": [3, 5, 6], "distributionmatch": [], "distributionmatchingi": [1, 3, 6], "distributionmatchingx": [1, 3, 6], "diverg": [3, 6], "divid": 3, "dl": 6, "dmx": [1, 3, 6], "dmy": [1, 3, 6], "do": [3, 4, 5, 6], "doc_embed": 6, "doc_embedding_s": 6, "doc_posterior": 6, "document": [4, 5, 6], "document_embed": [1, 3, 4], "doe": [3, 6], "doi": 6, "domain": 3, "domaina": 3, "domainb": 3, "domainmix": [1, 2, 3], "dot": 3, "dowload": 3, "down": [3, 5, 6], "download": [3, 5], "download_fil": [1, 2, 3], "download_file_if_not_exist": [1, 2, 3], "draw": 3, "drawn": [3, 5], "drop": 4, "drop_p": 4, "dropout": [4, 6], "dry": 5, "dtype": 5, "dump": 5, "dure": 6, "dx": 6, "dy": [1, 3, 6], "dynam": [4, 5, 6], "e": [3, 4, 5, 6], "eacc": [1, 3, 6], "each": [3, 4, 5, 6], "earli": [3, 4, 6], "earlystop": [1, 2, 3], "easili": 4, "ecc": [1, 3, 6], "ecml": 6, "edu": 5, "eemq": [1, 3, 6], "ehdi": [1, 3, 6], "either": [3, 6], "element": [3, 5, 6], "elm": 6, "em": [1, 3, 6], "emb": 4, "embed": [4, 6], "embed_s": 4, "embedding_s": 4, "emploi": 6, "empti": 5, "emq": [1, 3, 6], "emq_bct": [1, 3, 6], "enabl": 4, "encod": 5, "end": [3, 6], "end_msg": 3, "endeavour": 3, "endow": 3, "enforc": 3, "ensembl": [1, 3, 5, 6], "ensemblefactori": [1, 3, 6], "ensur": 3, "entir": 3, "entri": 6, "enum": 3, "enumer": 3, "environ": [3, 6], "ep": 3, "epacc": [1, 3, 6], "epoch": [3, 4, 6], "epsilon": [1, 3, 6], "equal": [3, 6], "equat": 6, "equidist": 3, "equival": 6, "err_nam": 3, "error": [1, 2, 4, 6], "error_by_drift": [1, 2, 3], "error_metr": 3, "error_nam": 3, "especi": 3, "establish": 3, "estim": [3, 4, 5, 6], "estim_prev": 3, "estim_preval": 6, "estimant": 6, "esuli": [4, 5, 6], "et": [4, 5, 6], "evaltestcas": [], "evalu": [1, 2, 4, 5, 6], "evaluate_on_sampl": [1, 2, 3], "evaluation_report": [1, 2, 3], "evalut": 6, "even": 3, "eventu": [4, 5], "everi": [3, 6], "exact": [5, 6], "exact_train_prev": 6, "exampl": [3, 4, 5, 6], "exce": 3, "except": [3, 6], "exhaust": 3, "exist": [3, 6], "exist_ok": 3, "expand": 3, "expand_grid": [1, 2, 3], "expect": 6, "expectationmaximizationquantifi": [1, 3, 6], "experi": [3, 5], "explicit": 6, "explor": 3, "express": 5, "extend": [3, 6], "extens": 6, "extract": [3, 5, 6], "f": [5, 6], "f1": [3, 4], "f1_error": [1, 2, 3], "f1e": [1, 2, 3], "f_1": 3, "factor": 3, "factori": 6, "fail": [1, 2, 3, 6], "fals": [3, 4, 5, 6], "famili": 6, "far": [3, 4, 5], "fare": 3, "fast": [3, 5], "faster": 5, "feat1": 5, "feat2": 5, "featn": 5, "featur": [5, 6], "feature_extract": 5, "fetch_ifcb": [1, 3, 5], "fetch_lequa2022": [1, 3, 5], "fetch_review": [1, 3, 5, 6], "fetch_twitt": [1, 3, 5], "fetch_ucibinarydataset": [1, 3, 5], "fetch_ucibinarylabelledcollect": [1, 3, 5], "fetch_ucilabelledcollect": 5, "fetch_ucimulticlassdataset": [1, 3, 5], "fetch_ucimulticlasslabelledcollect": [1, 3, 5], "ff": 6, "ff_layer": 6, "file": [3, 4, 5, 6], "filenam": 3, "final": 6, "find": 6, "first": [3, 5, 6], "fit": [1, 2, 3, 4, 5, 6], "fit_classifi": 6, "fit_cv": [1, 3, 4], "fit_tr_val": [1, 3, 4], "fit_transform": [1, 3, 5], "flag": 3, "float": [3, 4, 5, 6], "fn": 3, "fold": [3, 5, 6], "folder": [5, 6], "follow": [3, 5, 6], "fomart": 5, "for_model_select": 5, "forc": 3, "form": [3, 5, 6], "forman": 6, "format": [3, 5, 6], "former": 6, "forward": [1, 3, 4, 6], "found": [3, 4, 5, 6], "fp": 3, "fpr": [3, 6], "frac": [3, 6], "fraction": 6, "framework": [1, 6], "franc": 6, "frequenc": [5, 6], "from": [3, 4, 5, 6], "from_csv": [1, 3, 5], "from_nam": [1, 2, 3], "from_spars": [1, 3, 5], "from_text": [1, 3, 5], "full": 3, "fulli": 3, "func": 3, "function": [1, 2, 4, 5, 6], "further": [4, 5, 6], "fusion": 5, "g": [3, 5, 6], "gain": 3, "gao": [5, 6], "gap": 5, "gasp": 5, "gen": 3, "gener": [3, 4, 5, 6], "generation_func": 3, "get": [3, 4, 5, 6], "get_col": [1, 2, 3], "get_diverg": [1, 2, 3], "get_kde_funct": [1, 3, 6], "get_labelled_collect": [1, 2, 3], "get_mixture_compon": [1, 3, 6], "get_nprevpoints_approxim": [1, 2, 3], "get_param": [1, 2, 3, 4, 6], "get_probability_distribut": [1, 3, 6], "get_quapy_hom": [1, 2, 3], "getptecondestim": [1, 3, 6], "github": 5, "give": 6, "given": [3, 4, 5, 6], "global": 3, "goal": 6, "goe": 3, "gonz\u00e1lez": 6, "got": 6, "gpu": [4, 6], "gram_matrix_mix_sum": [1, 3, 6], "greater": 5, "grenobl": 6, "grid": [3, 6], "gridsearchcv": 6, "gridsearchq": [1, 2, 3, 6], "ground": 6, "ground_truth_path": [], "group_param": [1, 2, 3], "guarante": [3, 5, 6], "guid": 5, "g\u00e1llego": [5, 6], "h": 6, "ha": [3, 4, 5, 6], "had": 5, "handl": 3, "hard": [3, 4, 6], "harmon": 3, "hat": [3, 6], "have": [3, 5, 6], "hcr": 5, "hd": [3, 6], "hdx": [1, 3, 6], "hdy": [1, 3, 6], "held": [3, 4, 6], "helling": 6, "hellingerdist": [1, 2, 3], "hellingerdistancei": [1, 3, 6], "hellingh": 3, "help": 6, "helper": 3, "henc": [3, 5, 6], "here": 6, "heurist": 6, "hidden": [4, 6], "hidden_s": 4, "hierarchytestcas": [], "high": 3, "highlight": 3, "hightlight": 3, "histogram": 6, "hlt": 1, "hold": [3, 6], "home": [3, 5], "hook": 6, "host": 1, "host_fold": 4, "how": [3, 5, 6], "howev": 3, "hp": 5, "hsosik": 5, "html": 5, "http": [1, 3, 5, 6], "hyper": [3, 4, 6], "hyperparamet": [3, 6], "i": [1, 3, 4, 5, 6], "ic": 5, "id": 5, "ifcb": 5, "ifcb_zenodo": 5, "ifcbtestsampl": 5, "ifcbtrainsamplesfromdir": 5, "ignor": [3, 5, 6], "ii": 3, "iid": 6, "imdb": 5, "implement": [3, 4, 5, 6], "implicit": 3, "import": [5, 6], "impos": 3, "improv": [3, 4, 6], "in_plac": 3, "includ": [1, 5, 6], "inconveni": 3, "independ": [3, 6], "index": [1, 3, 4, 5, 6], "indextransform": [1, 3, 5], "indic": [3, 4, 5, 6], "individu": 5, "ineffici": 3, "infer": 5, "inform": [3, 4, 5, 6], "infrequ": 5, "inherit": 3, "initi": [4, 6], "inplac": [5, 6], "input": [3, 4, 5, 6], "instal": [4, 6], "instanc": [3, 4, 5, 6], "instanti": [3, 4, 6], "instead": [3, 5, 6], "int": [3, 5, 6], "integ": [3, 4, 5, 6], "interest": 3, "interfac": 6, "intern": [4, 5, 6], "interpret": 6, "interv": 3, "intract": 3, "invalid": [1, 2, 3], "invok": [3, 5], "involv": 3, "irrespect": 6, "isomer": 3, "isometr": 3, "issu": [3, 6], "isti": 1, "item": 3, "iter": [3, 5, 6], "iterateprotocol": [1, 2, 3], "iterrow": [], "its": [3, 4, 6], "itself": [3, 6], "j": [5, 6], "joachim": [4, 6], "joblib": 6, "join": [1, 3, 5], "k": [3, 4, 5, 6], "kde": 6, "kdebas": [1, 3, 6], "kdei": 6, "kdeyc": [1, 3, 6], "kdeyhd": [1, 3, 6], "kdeyml": [1, 3, 6], "keep": [3, 5], "kei": [3, 5], "kept": 5, "kernel": [4, 6], "kernel_height": 4, "kerneldens": 6, "keyword": [5, 6], "kfcv": [1, 3, 4, 5, 6], "kindl": [5, 6], "kl": 3, "kld": [1, 2, 3, 4, 6], "knowledg": 5, "known": [3, 6], "kraemer": 3, "kullback": [3, 6], "kundaj": 4, "kwarg": [4, 5, 6], "l": 6, "l1": [3, 6], "l2": 6, "label": [3, 4, 5, 6], "labelcollectiontestcas": [], "labelled_collect": 3, "labelledcollect": [1, 3, 5, 6], "larg": 3, "larger": [3, 5, 6], "largest": 3, "last": [3, 4, 5], "latinn": 6, "latter": 6, "launch": 3, "layer": [4, 6], "lazi": 6, "ldot": 6, "lead": 5, "learn": [3, 4, 5, 6], "learner": [4, 6], "least": 5, "leav": 5, "left": [3, 5, 6], "legend": 3, "leibler": [3, 6], "len": 3, "length": [4, 5], "lequa": 5, "lequa2022_experi": 5, "less": [3, 5], "let": [3, 6], "leyend": 3, "like": [3, 4, 5, 6], "likelihood": [4, 6], "limit": [3, 6], "line": 3, "linear": [3, 6], "linear_model": 4, "linear_search": [1, 2, 3], "linearsvc": 5, "list": [3, 4, 5, 6], "listedcolormap": 3, "literatur": 3, "load": [1, 3, 5, 6], "load_category_map": [], "load_fn": [], "load_raw_docu": [], "load_vector_docu": [], "loader": 5, "loader_func": 5, "loader_kwarg": 5, "local": 3, "log": [3, 5, 6], "logist": [4, 6], "logisticregress": [4, 6], "logscal": 3, "logspac": 6, "loki": [3, 6], "long": 4, "longer": [3, 6], "longest": 4, "look": 6, "loop": 6, "loss": [3, 4, 6], "lost": 3, "low": [3, 4], "lower": 6, "lower_is_bett": 3, "lowranklogisticregress": [1, 3, 4], "lpha": [], "lq": 6, "lr": [4, 6], "lstm": [4, 6], "lstm_class_nlay": 4, "lstm_hidden_s": 6, "lstm_nlayer": 6, "lstmnet": [1, 3, 4], "m": [1, 3, 6], "machin": 4, "macro": 3, "made": [3, 5, 6], "mae": [1, 2, 3, 4, 6], "mae_loss": [1, 3, 6], "mai": [3, 6], "maintain": 6, "make": [3, 6], "makedir": 3, "manag": 5, "mani": [3, 6], "manner": [4, 6], "map": [4, 6], "map_parallel": [1, 2, 3], "margin": [4, 6], "mark": 3, "mass": 3, "match": 6, "math": [3, 6], "mathbb": 6, "mathcal": [3, 6], "mathrm": 6, "matplotlib": 3, "matric": 5, "matrix": [3, 6], "max": [1, 3, 6], "max_it": [1, 3, 6], "max_sample_s": 6, "maxim": 6, "maximum": [3, 4, 6], "maximumlikelihoodprevalenceestim": [1, 3, 6], "mean": [3, 4, 5, 6], "mean_absolute_error": [1, 2, 3], "mean_normalized_absolute_error": [1, 2, 3], "mean_normalized_relative_absolute_error": [1, 2, 3], "mean_relative_absolute_error": [1, 2, 3], "meant": 6, "measur": [3, 6], "median": 6, "medianestim": [1, 3, 6], "medianestimator2": [1, 3, 6], "medianquantifi": [], "member": 6, "memori": 4, "merchandis": 5, "messag": 6, "met": 5, "meta": [1, 2, 3], "method": [1, 2, 3], "method_nam": 3, "method_ord": 3, "methodnam": [], "metric": [3, 6], "might": [3, 5, 6], "mimick": 6, "min_": [3, 6], "min_df": [5, 6], "min_po": 6, "minim": [3, 6], "minimum": [5, 6], "minimun": 5, "mining6": 5, "minu": 3, "misclassif": 6, "misclassificatin": 6, "miss": 3, "mixtur": [3, 6], "mixture_point": 3, "mkld": [1, 2, 3, 6], "ml": [5, 6], "mlpe": 6, "mnae": [1, 2, 3, 6], "mnkld": [1, 2, 3, 6], "mnrae": [1, 2, 3, 6], "mock": [3, 4], "mock_labelled_collect": [], "model": [3, 4, 6], "model_select": [1, 2, 6], "modif": 3, "modifi": 3, "modseltestcas": [], "modul": [0, 1, 2], "monitor": 3, "mont": 6, "montecarlo_tri": 6, "more": [3, 5, 6], "moreo": [5, 6], "most": [3, 5, 6], "mrae": [1, 2, 3, 4, 6], "ms2": [1, 3, 6], "mse": [1, 2, 3, 6], "msg": 3, "multi": 6, "multiclass": [3, 5, 6], "multipli": 3, "multiprocess": [3, 6], "multivari": 4, "must": [5, 6], "mutual": 6, "my_arrai": 3, "my_collect": 5, "mytestcas": [], "n": [3, 4, 6], "n_bin": [3, 6], "n_categori": [], "n_class": [1, 3, 4, 5, 6], "n_compon": 4, "n_dimens": [4, 6], "n_epoch": 6, "n_featur": [4, 6], "n_instanc": [3, 4, 6], "n_job": [3, 4, 5, 6], "n_preval": 3, "n_prevpoint": 3, "n_repeat": 3, "n_sampl": [3, 4], "n_test": 5, "n_train": 5, "nae": [1, 2, 3], "name": [3, 4, 5, 6], "natur": 3, "naturalprevalenceprotocol": [1, 2, 3], "nbin": [3, 6], "nbv": [4, 6], "nbvscalibr": [1, 3, 4], "ndarrai": [3, 5, 6], "necessari": [3, 6], "need": [3, 5, 6], "neg": [3, 6], "neg_label": [1, 3, 6], "nest": 6, "net": 4, "network": [3, 4, 5, 6], "neural": [1, 2, 3, 5, 6], "neuralclassifiertrain": [1, 3, 4, 6], "never": 3, "new": [3, 5], "newelm": [1, 3, 6], "newonevsal": [1, 3, 6], "newsvma": [1, 3, 6], "newsvmkld": [1, 3, 6], "newsvmq": [1, 3, 6], "newsvmra": [1, 3, 6], "next": [3, 4, 5], "nfeat": 6, "nfold": [3, 5], "nkld": [1, 2, 3, 4, 6], "nn": 4, "nogap": 5, "non": 6, "non_aggreg": [1, 2, 3], "non_aggregative_method": [], "none": [3, 4, 5, 6], "norm": 6, "normal": [3, 5, 6], "normalize_preval": [1, 2, 3], "normalized_absolute_error": [1, 2, 3], "normalized_relative_absolute_error": [1, 2, 3], "note": [3, 5], "noth": 6, "novemb": 4, "np": [3, 5, 6], "npp": [1, 2, 3], "nrae": [1, 2, 3], "nrepeat": 5, "num_prevalence_combin": [1, 2, 3], "number": [3, 4, 5, 6], "numer": [3, 5, 6], "numpi": [3, 4], "o": 3, "object": [3, 4, 5, 6], "observ": 6, "obtain": [3, 4, 6], "obtaind": 3, "obvious": 3, "occur": 5, "occurr": 5, "off": [4, 6], "offici": 5, "oldsymbol": [], "omd": 5, "on_preclassified_inst": [1, 2, 3], "onc": [3, 5], "one": [3, 5, 6], "ones": [3, 5, 6], "onevsal": [1, 3, 6], "onevsallaggreg": [1, 3, 6], "onevsallgener": [1, 3, 6], "onlabelledcollectionprotocol": [1, 2, 3], "onli": [3, 4, 5, 6], "open": [1, 3, 5], "optim": [3, 4, 6], "optim_minim": [1, 2, 3, 6], "option": [5, 6], "order": [3, 5, 6], "order_bi": 6, "org": [5, 6], "orient": [3, 6], "origin": [3, 5, 6], "other": [3, 5, 6], "otherwis": [3, 5, 6], "out": [3, 4, 5, 6], "outer": 3, "outlier": 3, "output": [3, 4, 5, 6], "outsid": 6, "over": 3, "overal": 3, "overridden": 6, "overview": 5, "p": [1, 3, 4, 5, 6], "p_": 6, "p_i": 3, "p_x": 6, "pacc": [1, 3, 6], "packag": [1, 2], "pad": [4, 5], "pad_length": 4, "padding_length": 4, "page": 1, "pair": 3, "panda": 3, "paper": [4, 6], "parallel": [1, 2, 3, 4, 5, 6], "parallel_backend": 6, "param": [3, 4, 6], "param_grid": [3, 6], "param_mod_sel": 6, "param_model_sel": 6, "paramet": [3, 4, 5, 6], "parameter": 6, "parent": 3, "parllel": 6, "part": 5, "particular": 6, "partit": [3, 4], "pass": [3, 4, 6], "patch": [4, 6], "path": [3, 4, 5, 6], "path_dir": [], "patienc": [3, 4, 6], "pcc": [1, 3, 6], "pdf": [1, 3, 6], "percentil": 3, "perf": [4, 6], "perform": [3, 4, 6], "perman": 3, "pglez82": 5, "phase": 6, "pickl": [3, 5, 6], "pickle_path": 3, "pickled_resourc": [1, 2, 3], "pip": 1, "pipelin": 6, "pkdd": 6, "pkl": 3, "place": [3, 5], "plankton": 5, "plot": [1, 2], "pmlr": 4, "point": [3, 5], "polici": 6, "pos_class": [3, 5], "pos_label": [1, 3, 6], "posit": [3, 5, 6], "positive_preval": 3, "possibl": [3, 6], "post": 3, "posterior": [3, 4, 6], "posterior_prob": 6, "power": 3, "pp": 4, "pre": 3, "pre_classif": 3, "prec": 3, "preced": 5, "precis": 3, "precomput": 5, "predefin": 5, "predict": [1, 2, 3, 4, 6], "predict_on": 6, "predict_proba": [1, 3, 4, 6], "prefer": 3, "prefix": [], "preliminari": 6, "prepar": 3, "preprocess": [1, 2, 3, 6], "present": 5, "preserv": [3, 5], "prev": [3, 5], "preval": [1, 3, 4, 5, 6], "prevalence_estim": 3, "prevalence_from_label": [1, 2, 3], "prevalence_from_prob": [1, 2, 3], "prevalence_grid": [1, 2, 3], "prevalence_linspac": [1, 2, 3], "prevalence_valu": [], "prevel": 6, "previous": [3, 6], "prevs_estim": 6, "prevs_hat": 3, "princip": 4, "print": [3, 4, 5], "prior": [3, 6], "probabilist": [1, 3, 4, 6], "probabilisticadjustedclassifyandcount": [1, 3, 6], "probabilisticclassifyandcount": [1, 3, 6], "probabl": [3, 4, 6], "problem": [3, 5, 6], "procedur": 3, "proceed": [5, 6], "process": [3, 5], "produc": 3, "product": 5, "progress": 5, "proper": 6, "properli": 6, "properti": [3, 4, 5, 6], "proport": [4, 5, 6], "propos": 6, "protocol": [1, 2, 5, 6], "provid": [5, 6], "ptecondestim": 6, "ptr": 6, "publicli": 5, "purpos": 6, "put": 6, "py": 5, "python": [1, 5], "pytorch": 6, "p\u00e9rez": [5, 6], "q": [3, 4, 6], "q_": 6, "q_i": 3, "qacc": 4, "qdrop_p": 6, "qf1": 4, "qgm": 4, "qp": [3, 5, 6], "quanet": [4, 6], "quanetmodul": [1, 3, 6], "quanettrain": [1, 3, 6], "quantif": [0, 1, 3, 4, 5, 6], "quantifi": [1, 2, 3, 5, 6], "quantification_error": 3, "quantiti": 3, "quapy_data": 3, "quay_data": 5, "que": 3, "question": 3, "quevedo": 5, "quick": 5, "quit": 3, "r": [3, 5, 6], "rae": [1, 2, 3], "rais": [3, 6], "raise_error": 3, "raise_except": 3, "rand": 3, "random": [3, 5], "random_se": 3, "random_st": [1, 2, 3, 5, 6], "randomli": 5, "rang": [3, 6], "rank": [4, 6], "rare": 5, "rate": [3, 4, 6], "raw": [3, 5], "re": [4, 5], "reach": 6, "read": 5, "reader": [1, 2, 3], "real": [3, 4, 5, 6], "realiz": 3, "reason": 6, "recal": 3, "recalib": 6, "recalibr": 6, "recalibratedprobabilisticclassifi": [1, 3, 4], "recalibratedprobabilisticclassifierbas": [1, 3, 4], "recip": 6, "recommend": 6, "recomput": 6, "record": 5, "recurr": 5, "recurs": 6, "red_siz": 6, "reduc": [1, 3, 5], "reduce_column": [1, 3, 5], "refer": [4, 5], "refit": 3, "regardless": 5, "regim": 3, "region": 3, "regist": 6, "regress": 4, "reindex_label": [1, 3, 5], "reiniti": 4, "rel": [3, 5, 6], "relative_absolute_error": [1, 2, 3], "reli": [3, 6], "remaind": 6, "remov": [5, 6], "repeat": 3, "repetit": 3, "replac": [3, 5], "replic": 3, "report": [3, 6], "repositori": 5, "repr_siz": 4, "repres": [3, 5, 6], "represent": [3, 4, 6], "reproduc": [3, 5], "request": [3, 5, 6], "requir": [4, 5, 6], "reset_net_param": [1, 3, 4], "resourc": 3, "resp": 6, "respect": [3, 6], "rest": [3, 4, 5], "result": [3, 6], "resultsubmiss": [], "retain": [4, 6], "retrain": 4, "return": [3, 4, 5, 6], "return_constrained_dim": 3, "return_typ": [1, 2, 3], "reus": [3, 5], "review": 5, "reviews_sentiment_dataset": 5, "rgmin_": [], "right": [3, 5, 6], "rodr\u00edguez": 6, "round": 5, "routin": [3, 5, 6], "row": 5, "run": [3, 5, 6], "runtest": [], "saeren": 6, "same": [3, 5, 6], "sampl": [1, 2, 3, 4, 5, 6], "sample_id": [], "sample_prev": 3, "sample_s": [3, 6], "samples_paramet": [1, 2, 3], "samples_to_str": [], "samplesfromdir": 5, "sampling_from_index": [1, 3, 5], "sampling_index": [1, 3, 5], "sander": 5, "sanity_check": 3, "save": [3, 5], "save_text_fil": [1, 2, 3], "savepath": 3, "scale": [3, 4, 6], "scall": 5, "schwarz": 6, "scikit": [3, 4, 5, 6], "scipi": [3, 5], "score": [3, 4, 5, 6], "scott": 6, "script": [5, 6], "se": [1, 2, 3], "search": [1, 3, 6], "sebastiani": [5, 6], "second": [3, 5], "secondari": 3, "see": [3, 4, 5, 6], "seed": [3, 5, 6], "seen": [3, 6], "select": [3, 5, 6], "self": [3, 4, 5, 6], "semeval13": 5, "semeval14": 5, "semeval15": 5, "semeval16": 5, "sens": 3, "sentenc": 5, "sentiment": 5, "separ": [3, 5], "sequenc": 3, "seri": 5, "serv": [3, 5], "set": [3, 4, 5, 6], "set_param": [1, 2, 3, 4, 6], "setup": 6, "sever": 5, "shape": [3, 4, 5, 6], "share": 5, "shift": [3, 4, 6], "short": 4, "shorter": 4, "should": [3, 4, 5, 6], "show": [3, 4, 5, 6], "show_dens": 3, "show_legend": 3, "show_std": 3, "shown": 3, "shrikumar": 4, "shuffl": [4, 5], "side": 3, "sign": 3, "significantli": 3, "silent": [3, 6], "silverman": 6, "sim_": 6, "similar": [3, 6], "simpl": [3, 6], "simplex": 3, "simpli": [3, 6], "simplif": 6, "sinc": [5, 6], "singl": [3, 6], "single_sample_train": 5, "site": 5, "size": [3, 4, 5, 6], "skip": 3, "sklearn": [4, 5, 6], "sld": [1, 3, 6], "sleep": 3, "slice": 3, "slsqp": 3, "smallest": 3, "smm": [1, 3, 6], "smooth": [1, 2, 3], "smooth_limits_epsilon": 3, "so": [3, 4, 5, 6], "social": 5, "soft": 6, "solut": [3, 6], "solv": 6, "solve_adjust": [1, 3, 6], "solver": 6, "some": [3, 5, 6], "some_arrai": 3, "sort": 6, "sought": 6, "sourc": [1, 3, 4, 5, 6], "space": [3, 4, 6], "spars": 5, "special": 5, "specif": [3, 6], "specifi": [3, 4, 5, 6], "spectrum": 3, "speed": [3, 6], "sperduti": 5, "split": [3, 4, 5, 6], "split_random": [1, 3, 5], "split_stratifi": [1, 3, 5], "splitstratifi": [1, 3, 5], "spmatrix": 5, "sqrt": [3, 6], "squar": [3, 6], "sst": 5, "stabil": 6, "stabl": 5, "stackexchang": 3, "stand": [3, 6], "standard": [1, 3, 4, 5, 6], "star": 3, "start_msg": 3, "stat": [1, 3, 5], "state": 3, "static": 6, "statist": [3, 6], "stats_siz": 6, "statu": [1, 2, 3], "std": 4, "stdout": 3, "step": [3, 6], "stop": [3, 4, 6], "store": [4, 5, 6], "str": [3, 5, 6], "stratif": 5, "stratifi": [4, 5, 6], "stride": 4, "string": [3, 5, 6], "strprev": [1, 2, 3], "structur": 6, "studi": 5, "style": 5, "subclass": [5, 6], "subdir": 3, "sublinear_tf": 5, "submodul": [1, 2], "subobject": 6, "subpackag": [1, 2], "subsequ": 5, "subtract": [3, 5], "subtyp": 5, "success": [1, 2, 3], "suit": 5, "sum": [3, 6], "sum_": [3, 6], "support": [5, 6], "surfac": 5, "svm": [4, 5, 6], "svm_perf_classifi": 4, "svm_perf_learn": 4, "svmperf": [1, 2, 3, 6], "svmperf_bas": [4, 6], "svmperf_hom": 6, "sweep": 6, "system": 6, "t": [3, 4, 6], "t1a": 5, "t1b": 5, "t2a": 5, "t2b": 5, "t50": [1, 3, 6], "tab10": 3, "tail": 3, "tail_density_threshold": 3, "take": [3, 5, 6], "taken": [3, 4, 5, 6], "target": [3, 4, 6], "task": 5, "te": 5, "temp": 6, "temp_se": [1, 2, 3], "temperatur": [4, 6], "tempor": [3, 4], "tensor": 4, "term": [3, 4, 5, 6], "ternari": 6, "test": [3, 4, 5, 6], "test_aggreg": [], "test_aggregative_method": [], "test_app_not_repl": [], "test_app_numb": [], "test_app_repl": [], "test_app_sanity_check": [], "test_bas": [], "test_binari": [], "test_covariate_shift_not_repl": [], "test_covariate_shift_repl": [], "test_dataset": [], "test_ensemble_method": [], "test_eval_speedup": [], "test_evalu": [], "test_evaluation_output": [], "test_fetch_lequa2022": [], "test_fetch_review": [], "test_fetch_twitt": [], "test_fetch_ucidataset": [], "test_fetch_ucimultidataset": [], "test_gen": 5, "test_hierarchi": [], "test_import": [], "test_join": [], "test_kraemer_not_repl": [], "test_kraemer_repl": [], "test_labelcollect": [], "test_median_meta": [], "test_median_meta_modsel": [], "test_method": [], "test_modsel": [], "test_modsel_parallel": [], "test_modsel_parallel_speedup": [], "test_modsel_timeout": [], "test_no_seed_init": [], "test_non_aggregative_method": [], "test_npp_not_repl": [], "test_npp_repl": [], "test_parallel_replic": [], "test_path": 5, "test_prediction_replic": [], "test_prevalences_path": [], "test_probabilist": [], "test_protocol": [], "test_quanet_method": [], "test_replic": [], "test_samping_replic": [], "test_split": 5, "test_str_label_nam": [], "testcas": [], "testprotocol": [], "text": [3, 4, 5, 6], "text2tfidf": [1, 3, 5], "textclassifiernet": [1, 3, 4], "textual": 5, "tf": 5, "tfidf": 5, "tfidfvector": 5, "th": 6, "than": [3, 4, 5, 6], "thei": 6, "them": [5, 6], "therefor": 3, "thi": [1, 3, 4, 5, 6], "thorsten": 4, "those": [3, 4, 6], "though": 3, "threshold": [3, 6], "thresholdoptim": [1, 3, 6], "through": 3, "thu": [3, 4, 6], "time": [3, 5, 6], "timeout": [1, 2, 3], "timeouterror": 3, "timer": 3, "titl": 3, "tmp": 4, "tn": 3, "togeth": 5, "token": [4, 5], "tol": 6, "toler": 6, "toleranz": 3, "top": [3, 6], "topso": [3, 6], "topsoedist": [1, 2, 3], "torch": [4, 6], "torchdataset": [1, 3, 4], "total": [1, 2, 3], "toward": [5, 6], "tp": 3, "tpr": [3, 6], "tr": 5, "tr_iter_per_poch": 6, "tr_prev": [3, 6], "track": 3, "trade": [4, 6], "train": [3, 4, 5, 6], "train_path": 5, "train_prev": 3, "train_prop": 5, "train_siz": 5, "train_test": [1, 3, 5], "trainer": 4, "transform": [1, 3, 4, 5, 6], "tri": 6, "trial": 6, "true": [3, 4, 5, 6], "true_prev": 3, "truncatedsvd": 4, "truth": 6, "tscalibr": [1, 3, 4], "ttest_alpha": 3, "tupl": [3, 5, 6], "tweet": 5, "twitter": 5, "twitter_sentiment_datasets_test": 5, "twitter_sentiment_datasets_train": 5, "two": [3, 5, 6], "txt": 3, "type": [3, 5, 6], "typic": [3, 4, 5, 6], "u": 6, "u1": 5, "uci": 5, "uci_dataset": 5, "uci_multiclass_dataset": 5, "ucimlrepo": 5, "unalt": 4, "underli": 6, "underlin": 3, "understand": 3, "undertaken": 3, "unifi": 6, "uniform": [3, 5, 6], "uniform_prevalence_sampl": [1, 2, 3], "uniform_sampl": [1, 3, 5], "uniform_sampling_index": [1, 3, 5], "uniform_simplex_sampl": [1, 2, 3], "uniformli": 3, "uniformprevalenceprotocol": [1, 2, 3], "union": 5, "uniqu": 5, "unit": [3, 6], "unk": 5, "unknown": 5, "unlabel": 6, "unlik": 3, "until": 6, "unus": [3, 4], "up": [3, 4, 6], "updat": 6, "upp": [1, 2, 3], "url": 3, "us": [3, 4, 5, 6], "user": 3, "utf": 5, "util": [1, 2, 4, 5], "v": [3, 4, 6], "va_iter_per_poch": 6, "val": [4, 5], "val_gen": 5, "val_split": [1, 3, 4, 6], "val_split_": [1, 3, 6], "valid": [3, 4, 5, 6], "valid_loss": [1, 3, 4, 6], "valid_polici": [1, 3, 6], "valu": [3, 4, 5, 6], "valueerror": 3, "variabl": [3, 5], "variant": [3, 6], "vector": [3, 4, 5, 6], "verbos": [3, 4, 5, 6], "veri": 3, "version": [3, 4], "vertic": 3, "vertical_xtick": 3, "via": [3, 4, 6], "vline": 3, "vocab_s": 4, "vocabulari": [4, 5], "vocabulary_s": [1, 3, 4, 5, 6], "vscalibr": [1, 3, 4], "w": 5, "wa": [3, 5, 6], "wai": 6, "wait": 4, "warn": [1, 3, 5, 6], "wb": 5, "we": 5, "weight": [4, 5], "weight_decai": 4, "well": 6, "whcih": 5, "when": [3, 4, 5, 6], "whenev": 3, "where": [3, 4, 5, 6], "whether": [3, 4, 5, 6], "which": [3, 4, 5, 6], "while": [4, 5, 6], "whoi": 5, "whole": [3, 4], "whose": [5, 6], "widetild": 6, "within": [3, 6], "without": [3, 5], "word": [4, 5, 6], "work": [3, 5, 6], "worker": [3, 4, 5, 6], "workshop": 6, "wors": 3, "would": [5, 6], "wrap": 6, "wrap_cls_param": [], "wrapper": [3, 4, 5, 6], "x": [1, 3, 4, 5, 6], "x2": 5, "x_1": 6, "x_error": 3, "x_i": 6, "x_t": 6, "xavier": 4, "xavier_uniform": [1, 3, 4], "xp": [1, 3, 5], "xy": [1, 3, 5], "y": [1, 3, 4, 5, 6], "y_": 6, "y_error": 3, "y_i": 6, "y_j": 6, "y_pred": 3, "y_true": 3, "yeast": 5, "yield": [3, 5, 6], "z": 5, "z_": 3, "zenodo": 5, "zero": 3, "zip": 3}, "titles": ["quapy", "Welcome to QuaPy\u2019s documentation!", "quapy", "quapy package", "quapy.classification package", "quapy.data package", "quapy.method package"], "titleterms": {"": 1, "A": [], "aggreg": 6, "api": [], "base": [5, 6], "benchmark": [], "calibr": 4, "classif": 4, "content": [1, 3, 4, 5, 6], "data": 5, "dataset": 5, "document": 1, "error": 3, "evalu": 3, "framework": [], "function": 3, "github": 1, "indic": 1, "instal": 1, "meta": 6, "method": [4, 6], "model_select": 3, "modul": [3, 4, 5, 6], "neural": 4, "non_aggreg": 6, "open": [], "packag": [3, 4, 5, 6], "plot": 3, "preprocess": 5, "protocol": 3, "python": [], "quantif": [], "quapi": [0, 1, 2, 3, 4, 5, 6], "reader": 5, "sourc": [], "submodul": [3, 4, 5, 6], "subpackag": 3, "svmperf": 4, "tabl": 1, "test": [], "test_bas": [], "test_dataset": [], "test_evalu": [], "test_hierarchi": [], "test_labelcollect": [], "test_method": [], "test_modsel": [], "test_protocol": [], "test_replic": [], "typic": [], "util": 3, "welcom": 1}})
\ No newline at end of file
+Search.setIndex({"alltitles": {"Contents": [[1, "contents"]], "GitHub": [[1, "github"]], "Indices and tables": [[1, "indices-and-tables"]], "Installation": [[1, "installation"]], "Module contents": [[3, "module-quapy"], [4, "module-quapy.classification"], [5, "module-quapy.data"], [6, "module-quapy.method"]], "Submodules": [[3, "submodules"], [4, "submodules"], [5, "submodules"], [6, "submodules"]], "Subpackages": [[3, "subpackages"]], "Welcome to QuaPy\u2019s documentation!": [[1, "welcome-to-quapy-s-documentation"]], "quapy": [[0, "module-quapy"], [2, "quapy"]], "quapy package": [[3, "quapy-package"]], "quapy.classification package": [[4, "quapy-classification-package"]], "quapy.classification.calibration module": [[4, "module-quapy.classification.calibration"]], "quapy.classification.methods module": [[4, "module-quapy.classification.methods"]], "quapy.classification.neural module": [[4, "module-quapy.classification.neural"]], "quapy.classification.svmperf module": [[4, "module-quapy.classification.svmperf"]], "quapy.data package": [[5, "quapy-data-package"]], "quapy.data.base module": [[5, "module-quapy.data.base"]], "quapy.data.datasets module": [[5, "module-quapy.data.datasets"]], "quapy.data.preprocessing module": [[5, "module-quapy.data.preprocessing"]], "quapy.data.reader module": [[5, "module-quapy.data.reader"]], "quapy.error module": [[3, "module-quapy.error"]], "quapy.evaluation module": [[3, "module-quapy.evaluation"]], "quapy.functional module": [[3, "module-quapy.functional"]], "quapy.method package": [[6, "quapy-method-package"]], "quapy.method.aggregative module": [[6, "module-quapy.method.aggregative"]], "quapy.method.base module": [[6, "module-quapy.method.base"]], "quapy.method.meta module": [[6, "module-quapy.method.meta"]], "quapy.method.non_aggregative module": [[6, "module-quapy.method.non_aggregative"]], "quapy.model_selection module": [[3, "module-quapy.model_selection"]], "quapy.plot module": [[3, "module-quapy.plot"]], "quapy.protocol module": [[3, "module-quapy.protocol"]], "quapy.util module": [[3, "module-quapy.util"]]}, "docnames": ["generated/quapy", "index", "modules", "quapy", "quapy.classification", "quapy.data", "quapy.method"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["generated/quapy.rst", "index.rst", "modules.rst", "quapy.rst", "quapy.classification.rst", "quapy.data.rst", "quapy.method.rst"], "indexentries": {"absolute_error() (in module quapy.error)": [[3, "quapy.error.absolute_error"]], "abstractprotocol (class in quapy.protocol)": [[3, "quapy.protocol.AbstractProtocol"]], "abstractstochasticseededprotocol (class in quapy.protocol)": [[3, "quapy.protocol.AbstractStochasticSeededProtocol"]], "acc_error() (in module quapy.error)": [[3, "quapy.error.acc_error"]], "acce() (in module quapy.error)": [[3, "quapy.error.acce"]], "add_word() (quapy.data.preprocessing.indextransformer method)": [[5, "quapy.data.preprocessing.IndexTransformer.add_word"]], "adjusted_quantification() (in module quapy.functional)": [[3, "quapy.functional.adjusted_quantification"]], "ae() (in module quapy.error)": [[3, "quapy.error.ae"]], "app (class in quapy.protocol)": [[3, "quapy.protocol.APP"]], "argmin_prevalence() (in module quapy.functional)": [[3, "quapy.functional.argmin_prevalence"]], "artificialprevalenceprotocol (in module quapy.protocol)": [[3, "quapy.protocol.ArtificialPrevalenceProtocol"]], "as_binary_prevalence() (in module quapy.functional)": [[3, "quapy.functional.as_binary_prevalence"]], "best_model() (quapy.model_selection.gridsearchq method)": [[3, "quapy.model_selection.GridSearchQ.best_model"]], "binarize() (in module quapy.data.reader)": [[5, "quapy.data.reader.binarize"]], "binary (quapy.data.base.dataset property)": [[5, "quapy.data.base.Dataset.binary"]], "binary (quapy.data.base.labelledcollection property)": [[5, "quapy.data.base.LabelledCollection.binary"]], "binary_bias_bins() (in module quapy.plot)": [[3, "quapy.plot.binary_bias_bins"]], "binary_bias_global() (in module quapy.plot)": [[3, "quapy.plot.binary_bias_global"]], "binary_diagonal() (in module quapy.plot)": [[3, "quapy.plot.binary_diagonal"]], "brokenbar_supremacy_by_drift() (in module quapy.plot)": [[3, "quapy.plot.brokenbar_supremacy_by_drift"]], "check_prevalence_vector() (in module quapy.functional)": [[3, "quapy.functional.check_prevalence_vector"]], "classes_ (quapy.data.base.dataset property)": [[5, "quapy.data.base.Dataset.classes_"]], "collator() (quapy.protocol.abstractstochasticseededprotocol method)": [[3, "quapy.protocol.AbstractStochasticSeededProtocol.collator"]], "configstatus (class in quapy.model_selection)": [[3, "quapy.model_selection.ConfigStatus"]], "counts() (quapy.data.base.labelledcollection method)": [[5, "quapy.data.base.LabelledCollection.counts"]], "create_if_not_exist() (in module quapy.util)": [[3, "quapy.util.create_if_not_exist"]], "create_parent_dir() (in module quapy.util)": [[3, "quapy.util.create_parent_dir"]], "cross_val_predict() (in module quapy.model_selection)": [[3, "quapy.model_selection.cross_val_predict"]], "dataset (class in quapy.data.base)": [[5, "quapy.data.base.Dataset"]], "domainmixer (class in quapy.protocol)": [[3, "quapy.protocol.DomainMixer"]], "download_file() (in module quapy.util)": [[3, "quapy.util.download_file"]], "download_file_if_not_exists() (in module quapy.util)": [[3, "quapy.util.download_file_if_not_exists"]], "earlystop (class in quapy.util)": [[3, "quapy.util.EarlyStop"]], "error (quapy.model_selection.status attribute)": [[3, "quapy.model_selection.Status.ERROR"]], "error_by_drift() (in module quapy.plot)": [[3, "quapy.plot.error_by_drift"]], "evaluate() (in module quapy.evaluation)": [[3, "quapy.evaluation.evaluate"]], "evaluate_on_samples() (in module quapy.evaluation)": [[3, "quapy.evaluation.evaluate_on_samples"]], "evaluation_report() (in module quapy.evaluation)": [[3, "quapy.evaluation.evaluation_report"]], "expand_grid() (in module quapy.model_selection)": [[3, "quapy.model_selection.expand_grid"]], "f1_error() (in module quapy.error)": [[3, "quapy.error.f1_error"]], "f1e() (in module quapy.error)": [[3, "quapy.error.f1e"]], "failed() (quapy.model_selection.configstatus method)": [[3, "quapy.model_selection.ConfigStatus.failed"]], "fetch_ifcb() (in module quapy.data.datasets)": [[5, "quapy.data.datasets.fetch_IFCB"]], "fetch_lequa2022() (in module quapy.data.datasets)": [[5, "quapy.data.datasets.fetch_lequa2022"]], "fetch_reviews() (in module quapy.data.datasets)": [[5, "quapy.data.datasets.fetch_reviews"]], "fetch_twitter() (in module quapy.data.datasets)": [[5, "quapy.data.datasets.fetch_twitter"]], "fetch_ucibinarydataset() (in module quapy.data.datasets)": [[5, "quapy.data.datasets.fetch_UCIBinaryDataset"]], "fetch_ucibinarylabelledcollection() (in module quapy.data.datasets)": [[5, "quapy.data.datasets.fetch_UCIBinaryLabelledCollection"]], "fetch_ucimulticlassdataset() (in module quapy.data.datasets)": [[5, "quapy.data.datasets.fetch_UCIMulticlassDataset"]], "fetch_ucimulticlasslabelledcollection() (in module quapy.data.datasets)": [[5, "quapy.data.datasets.fetch_UCIMulticlassLabelledCollection"]], "fit() (quapy.data.preprocessing.indextransformer method)": [[5, "quapy.data.preprocessing.IndexTransformer.fit"]], "fit() (quapy.model_selection.gridsearchq method)": [[3, "quapy.model_selection.GridSearchQ.fit"]], "fit_transform() (quapy.data.preprocessing.indextransformer method)": [[5, "quapy.data.preprocessing.IndexTransformer.fit_transform"]], "from_csv() (in module quapy.data.reader)": [[5, "quapy.data.reader.from_csv"]], "from_name() (in module quapy.error)": [[3, "quapy.error.from_name"]], "from_sparse() (in module quapy.data.reader)": [[5, "quapy.data.reader.from_sparse"]], "from_text() (in module quapy.data.reader)": [[5, "quapy.data.reader.from_text"]], "get_collator() (quapy.protocol.onlabelledcollectionprotocol class method)": [[3, "quapy.protocol.OnLabelledCollectionProtocol.get_collator"]], "get_divergence() (in module quapy.functional)": [[3, "quapy.functional.get_divergence"]], "get_labelled_collection() (quapy.protocol.onlabelledcollectionprotocol method)": [[3, "quapy.protocol.OnLabelledCollectionProtocol.get_labelled_collection"]], "get_nprevpoints_approximation() (in module quapy.functional)": [[3, "quapy.functional.get_nprevpoints_approximation"]], "get_params() (quapy.model_selection.gridsearchq method)": [[3, "quapy.model_selection.GridSearchQ.get_params"]], "get_quapy_home() (in module quapy.util)": [[3, "quapy.util.get_quapy_home"]], "gridsearchq (class in quapy.model_selection)": [[3, "quapy.model_selection.GridSearchQ"]], "group_params() (in module quapy.model_selection)": [[3, "quapy.model_selection.group_params"]], "hellingerdistance() (in module quapy.functional)": [[3, "quapy.functional.HellingerDistance"]], "index() (in module quapy.data.preprocessing)": [[5, "quapy.data.preprocessing.index"]], "indextransformer (class in quapy.data.preprocessing)": [[5, "quapy.data.preprocessing.IndexTransformer"]], "invalid (quapy.model_selection.status attribute)": [[3, "quapy.model_selection.Status.INVALID"]], "iterateprotocol (class in quapy.protocol)": [[3, "quapy.protocol.IterateProtocol"]], "join() (quapy.data.base.labelledcollection class method)": [[5, "quapy.data.base.LabelledCollection.join"]], "kfcv() (quapy.data.base.dataset class method)": [[5, "quapy.data.base.Dataset.kFCV"]], "kfcv() (quapy.data.base.labelledcollection method)": [[5, "quapy.data.base.LabelledCollection.kFCV"]], "kld() (in module quapy.error)": [[3, "quapy.error.kld"]], "labelledcollection (class in quapy.data.base)": [[5, "quapy.data.base.LabelledCollection"]], "linear_search() (in module quapy.functional)": [[3, "quapy.functional.linear_search"]], "load() (quapy.data.base.dataset class method)": [[5, "quapy.data.base.Dataset.load"]], "load() (quapy.data.base.labelledcollection class method)": [[5, "quapy.data.base.LabelledCollection.load"]], "mae() (in module quapy.error)": [[3, "quapy.error.mae"]], "map_parallel() (in module quapy.util)": [[3, "quapy.util.map_parallel"]], "mean_absolute_error() (in module quapy.error)": [[3, "quapy.error.mean_absolute_error"]], "mean_normalized_absolute_error() (in module quapy.error)": [[3, "quapy.error.mean_normalized_absolute_error"]], "mean_normalized_relative_absolute_error() (in module quapy.error)": [[3, "quapy.error.mean_normalized_relative_absolute_error"]], "mean_relative_absolute_error() (in module quapy.error)": [[3, "quapy.error.mean_relative_absolute_error"]], "mkld() (in module quapy.error)": [[3, "quapy.error.mkld"]], "mnae() (in module quapy.error)": [[3, "quapy.error.mnae"]], "mnkld() (in module quapy.error)": [[3, "quapy.error.mnkld"]], "mnrae() (in module quapy.error)": [[3, "quapy.error.mnrae"]], "module": [[3, "module-quapy"], [3, "module-quapy.error"], [3, "module-quapy.evaluation"], [3, "module-quapy.functional"], [3, "module-quapy.model_selection"], [3, "module-quapy.plot"], [3, "module-quapy.protocol"], [3, "module-quapy.util"], [5, "module-quapy.data"], [5, "module-quapy.data.base"], [5, "module-quapy.data.datasets"], [5, "module-quapy.data.preprocessing"], [5, "module-quapy.data.reader"]], "mrae() (in module quapy.error)": [[3, "quapy.error.mrae"]], "mse() (in module quapy.error)": [[3, "quapy.error.mse"]], "n_classes (quapy.data.base.dataset property)": [[5, "quapy.data.base.Dataset.n_classes"]], "n_classes (quapy.data.base.labelledcollection property)": [[5, "quapy.data.base.LabelledCollection.n_classes"]], "nae() (in module quapy.error)": [[3, "quapy.error.nae"]], "naturalprevalenceprotocol (in module quapy.protocol)": [[3, "quapy.protocol.NaturalPrevalenceProtocol"]], "nkld() (in module quapy.error)": [[3, "quapy.error.nkld"]], "normalize_prevalence() (in module quapy.functional)": [[3, "quapy.functional.normalize_prevalence"]], "normalized_absolute_error() (in module quapy.error)": [[3, "quapy.error.normalized_absolute_error"]], "normalized_relative_absolute_error() (in module quapy.error)": [[3, "quapy.error.normalized_relative_absolute_error"]], "npp (class in quapy.protocol)": [[3, "quapy.protocol.NPP"]], "nrae() (in module quapy.error)": [[3, "quapy.error.nrae"]], "num_prevalence_combinations() (in module quapy.functional)": [[3, "quapy.functional.num_prevalence_combinations"]], "on_preclassified_instances() (quapy.protocol.onlabelledcollectionprotocol method)": [[3, "quapy.protocol.OnLabelledCollectionProtocol.on_preclassified_instances"]], "onlabelledcollectionprotocol (class in quapy.protocol)": [[3, "quapy.protocol.OnLabelledCollectionProtocol"]], "optim_minimize() (in module quapy.functional)": [[3, "quapy.functional.optim_minimize"]], "p (quapy.data.base.labelledcollection property)": [[5, "quapy.data.base.LabelledCollection.p"]], "parallel() (in module quapy.util)": [[3, "quapy.util.parallel"]], "pickled_resource() (in module quapy.util)": [[3, "quapy.util.pickled_resource"]], "prediction() (in module quapy.evaluation)": [[3, "quapy.evaluation.prediction"]], "prevalence() (quapy.data.base.labelledcollection method)": [[5, "quapy.data.base.LabelledCollection.prevalence"]], "prevalence_from_labels() (in module quapy.functional)": [[3, "quapy.functional.prevalence_from_labels"]], "prevalence_from_probabilities() (in module quapy.functional)": [[3, "quapy.functional.prevalence_from_probabilities"]], "prevalence_grid() (quapy.protocol.app method)": [[3, "quapy.protocol.APP.prevalence_grid"]], "prevalence_linspace() (in module quapy.functional)": [[3, "quapy.functional.prevalence_linspace"]], "quantify() (quapy.model_selection.gridsearchq method)": [[3, "quapy.model_selection.GridSearchQ.quantify"]], "quapy": [[3, "module-quapy"]], "quapy.data": [[5, "module-quapy.data"]], "quapy.data.base": [[5, "module-quapy.data.base"]], "quapy.data.datasets": [[5, "module-quapy.data.datasets"]], "quapy.data.preprocessing": [[5, "module-quapy.data.preprocessing"]], "quapy.data.reader": [[5, "module-quapy.data.reader"]], "quapy.error": [[3, "module-quapy.error"]], "quapy.evaluation": [[3, "module-quapy.evaluation"]], "quapy.functional": [[3, "module-quapy.functional"]], "quapy.model_selection": [[3, "module-quapy.model_selection"]], "quapy.plot": [[3, "module-quapy.plot"]], "quapy.protocol": [[3, "module-quapy.protocol"]], "quapy.util": [[3, "module-quapy.util"]], "rae() (in module quapy.error)": [[3, "quapy.error.rae"]], "random_state (quapy.protocol.abstractstochasticseededprotocol property)": [[3, "quapy.protocol.AbstractStochasticSeededProtocol.random_state"]], "reduce() (quapy.data.base.dataset method)": [[5, "quapy.data.base.Dataset.reduce"]], "reduce_columns() (in module quapy.data.preprocessing)": [[5, "quapy.data.preprocessing.reduce_columns"]], "reindex_labels() (in module quapy.data.reader)": [[5, "quapy.data.reader.reindex_labels"]], "relative_absolute_error() (in module quapy.error)": [[3, "quapy.error.relative_absolute_error"]], "return_types (quapy.protocol.onlabelledcollectionprotocol attribute)": [[3, "quapy.protocol.OnLabelledCollectionProtocol.RETURN_TYPES"]], "sample() (quapy.protocol.abstractstochasticseededprotocol method)": [[3, "quapy.protocol.AbstractStochasticSeededProtocol.sample"]], "sample() (quapy.protocol.app method)": [[3, "quapy.protocol.APP.sample"]], "sample() (quapy.protocol.domainmixer method)": [[3, "quapy.protocol.DomainMixer.sample"]], "sample() (quapy.protocol.npp method)": [[3, "quapy.protocol.NPP.sample"]], "sample() (quapy.protocol.upp method)": [[3, "quapy.protocol.UPP.sample"]], "samples_parameters() (quapy.protocol.abstractstochasticseededprotocol method)": [[3, "quapy.protocol.AbstractStochasticSeededProtocol.samples_parameters"]], "samples_parameters() (quapy.protocol.app method)": [[3, "quapy.protocol.APP.samples_parameters"]], "samples_parameters() (quapy.protocol.domainmixer method)": [[3, "quapy.protocol.DomainMixer.samples_parameters"]], "samples_parameters() (quapy.protocol.npp method)": [[3, "quapy.protocol.NPP.samples_parameters"]], "samples_parameters() (quapy.protocol.upp method)": [[3, "quapy.protocol.UPP.samples_parameters"]], "sampling() (quapy.data.base.labelledcollection method)": [[5, "quapy.data.base.LabelledCollection.sampling"]], "sampling_from_index() (quapy.data.base.labelledcollection method)": [[5, "quapy.data.base.LabelledCollection.sampling_from_index"]], "sampling_index() (quapy.data.base.labelledcollection method)": [[5, "quapy.data.base.LabelledCollection.sampling_index"]], "save_text_file() (in module quapy.util)": [[3, "quapy.util.save_text_file"]], "se() (in module quapy.error)": [[3, "quapy.error.se"]], "set_params() (quapy.model_selection.gridsearchq method)": [[3, "quapy.model_selection.GridSearchQ.set_params"]], "smooth() (in module quapy.error)": [[3, "quapy.error.smooth"]], "split_random() (quapy.data.base.labelledcollection method)": [[5, "quapy.data.base.LabelledCollection.split_random"]], "split_stratified() (quapy.data.base.labelledcollection method)": [[5, "quapy.data.base.LabelledCollection.split_stratified"]], "splitstratified() (quapy.data.base.dataset class method)": [[5, "quapy.data.base.Dataset.SplitStratified"]], "standardize() (in module quapy.data.preprocessing)": [[5, "quapy.data.preprocessing.standardize"]], "stats() (quapy.data.base.dataset method)": [[5, "quapy.data.base.Dataset.stats"]], "stats() (quapy.data.base.labelledcollection method)": [[5, "quapy.data.base.LabelledCollection.stats"]], "status (class in quapy.model_selection)": [[3, "quapy.model_selection.Status"]], "strprev() (in module quapy.functional)": [[3, "quapy.functional.strprev"]], "success (quapy.model_selection.status attribute)": [[3, "quapy.model_selection.Status.SUCCESS"]], "success() (quapy.model_selection.configstatus method)": [[3, "quapy.model_selection.ConfigStatus.success"]], "temp_seed() (in module quapy.util)": [[3, "quapy.util.temp_seed"]], "text2tfidf() (in module quapy.data.preprocessing)": [[5, "quapy.data.preprocessing.text2tfidf"]], "timeout (quapy.model_selection.status attribute)": [[3, "quapy.model_selection.Status.TIMEOUT"]], "timeout() (in module quapy.util)": [[3, "quapy.util.timeout"]], "topsoedistance() (in module quapy.functional)": [[3, "quapy.functional.TopsoeDistance"]], "total() (quapy.protocol.abstractprotocol method)": [[3, "quapy.protocol.AbstractProtocol.total"]], "total() (quapy.protocol.app method)": [[3, "quapy.protocol.APP.total"]], "total() (quapy.protocol.domainmixer method)": [[3, "quapy.protocol.DomainMixer.total"]], "total() (quapy.protocol.iterateprotocol method)": [[3, "quapy.protocol.IterateProtocol.total"]], "total() (quapy.protocol.npp method)": [[3, "quapy.protocol.NPP.total"]], "total() (quapy.protocol.upp method)": [[3, "quapy.protocol.UPP.total"]], "train_test (quapy.data.base.dataset property)": [[5, "quapy.data.base.Dataset.train_test"]], "transform() (quapy.data.preprocessing.indextransformer method)": [[5, "quapy.data.preprocessing.IndexTransformer.transform"]], "uniform_prevalence_sampling() (in module quapy.functional)": [[3, "quapy.functional.uniform_prevalence_sampling"]], "uniform_sampling() (quapy.data.base.labelledcollection method)": [[5, "quapy.data.base.LabelledCollection.uniform_sampling"]], "uniform_sampling_index() (quapy.data.base.labelledcollection method)": [[5, "quapy.data.base.LabelledCollection.uniform_sampling_index"]], "uniform_simplex_sampling() (in module quapy.functional)": [[3, "quapy.functional.uniform_simplex_sampling"]], "uniformprevalenceprotocol (in module quapy.protocol)": [[3, "quapy.protocol.UniformPrevalenceProtocol"]], "upp (class in quapy.protocol)": [[3, "quapy.protocol.UPP"]], "vocabulary_size (quapy.data.base.dataset property)": [[5, "quapy.data.base.Dataset.vocabulary_size"]], "vocabulary_size() (quapy.data.preprocessing.indextransformer method)": [[5, "quapy.data.preprocessing.IndexTransformer.vocabulary_size"]], "warn() (in module quapy.data.datasets)": [[5, "quapy.data.datasets.warn"]], "x (quapy.data.base.labelledcollection property)": [[5, "quapy.data.base.LabelledCollection.X"]], "xp (quapy.data.base.labelledcollection property)": [[5, "quapy.data.base.LabelledCollection.Xp"]], "xy (quapy.data.base.labelledcollection property)": [[5, "quapy.data.base.LabelledCollection.Xy"]], "y (quapy.data.base.labelledcollection property)": [[5, "quapy.data.base.LabelledCollection.y"]]}, "objects": {"": [[3, 0, 0, "-", "quapy"]], "quapy": [[4, 0, 0, "-", "classification"], [5, 0, 0, "-", "data"], [3, 0, 0, "-", "error"], [3, 0, 0, "-", "evaluation"], [3, 0, 0, "-", "functional"], [6, 0, 0, "-", "method"], [3, 0, 0, "-", "model_selection"], [3, 0, 0, "-", "plot"], [3, 0, 0, "-", "protocol"], [3, 0, 0, "-", "util"]], "quapy.classification": [[4, 0, 0, "-", "calibration"], [4, 0, 0, "-", "methods"], [4, 0, 0, "-", "neural"], [4, 0, 0, "-", "svmperf"]], "quapy.classification.calibration": [[4, 1, 1, "", "BCTSCalibration"], [4, 1, 1, "", "NBVSCalibration"], [4, 1, 1, "", "RecalibratedProbabilisticClassifier"], [4, 1, 1, "", "RecalibratedProbabilisticClassifierBase"], [4, 1, 1, "", "TSCalibration"], [4, 1, 1, "", "VSCalibration"]], "quapy.classification.calibration.RecalibratedProbabilisticClassifierBase": [[4, 2, 1, "", "classes_"], [4, 3, 1, "", "fit"], [4, 3, 1, "", "fit_cv"], [4, 3, 1, "", "fit_tr_val"], [4, 3, 1, "", "predict"], [4, 3, 1, "", "predict_proba"]], "quapy.classification.methods": [[4, 1, 1, "", "LowRankLogisticRegression"]], "quapy.classification.methods.LowRankLogisticRegression": [[4, 3, 1, "", "fit"], [4, 3, 1, "", "get_params"], [4, 3, 1, "", "predict"], [4, 3, 1, "", "predict_proba"], [4, 3, 1, "", "set_params"], [4, 3, 1, "", "transform"]], "quapy.classification.neural": [[4, 1, 1, "", "CNNnet"], [4, 1, 1, "", "LSTMnet"], [4, 1, 1, "", "NeuralClassifierTrainer"], [4, 1, 1, "", "TextClassifierNet"], [4, 1, 1, "", "TorchDataset"]], "quapy.classification.neural.CNNnet": [[4, 3, 1, "", "document_embedding"], [4, 3, 1, "", "get_params"], [4, 2, 1, "", "vocabulary_size"]], "quapy.classification.neural.LSTMnet": [[4, 3, 1, "", "document_embedding"], [4, 3, 1, "", "get_params"], [4, 2, 1, "", "vocabulary_size"]], "quapy.classification.neural.NeuralClassifierTrainer": [[4, 2, 1, "", "device"], [4, 3, 1, "", "fit"], [4, 3, 1, "", "get_params"], [4, 3, 1, "", "predict"], [4, 3, 1, "", "predict_proba"], [4, 3, 1, "", "reset_net_params"], [4, 3, 1, "", "set_params"], [4, 3, 1, "", "transform"]], "quapy.classification.neural.TextClassifierNet": [[4, 3, 1, "", "dimensions"], [4, 3, 1, "", "document_embedding"], [4, 3, 1, "", "forward"], [4, 3, 1, "", "get_params"], [4, 3, 1, "", "predict_proba"], [4, 2, 1, "", "vocabulary_size"], [4, 3, 1, "", "xavier_uniform"]], "quapy.classification.neural.TorchDataset": [[4, 3, 1, "", "asDataloader"]], "quapy.classification.svmperf": [[4, 1, 1, "", "SVMperf"]], "quapy.classification.svmperf.SVMperf": [[4, 3, 1, "", "decision_function"], [4, 3, 1, "", "fit"], [4, 3, 1, "", "predict"], [4, 4, 1, "", "valid_losses"]], "quapy.data": [[5, 0, 0, "-", "base"], [5, 0, 0, "-", "datasets"], [5, 0, 0, "-", "preprocessing"], [5, 0, 0, "-", "reader"]], "quapy.data.base": [[5, 1, 1, "", "Dataset"], [5, 1, 1, "", "LabelledCollection"]], "quapy.data.base.Dataset": [[5, 3, 1, "", "SplitStratified"], [5, 2, 1, "", "binary"], [5, 2, 1, "", "classes_"], [5, 3, 1, "", "kFCV"], [5, 3, 1, "", "load"], [5, 2, 1, "", "n_classes"], [5, 3, 1, "", "reduce"], [5, 3, 1, "", "stats"], [5, 2, 1, "", "train_test"], [5, 2, 1, "", "vocabulary_size"]], "quapy.data.base.LabelledCollection": [[5, 2, 1, "", "X"], [5, 2, 1, "", "Xp"], [5, 2, 1, "", "Xy"], [5, 2, 1, "", "binary"], [5, 3, 1, "", "counts"], [5, 3, 1, "", "join"], [5, 3, 1, "", "kFCV"], [5, 3, 1, "", "load"], [5, 2, 1, "", "n_classes"], [5, 2, 1, "", "p"], [5, 3, 1, "", "prevalence"], [5, 3, 1, "", "sampling"], [5, 3, 1, "", "sampling_from_index"], [5, 3, 1, "", "sampling_index"], [5, 3, 1, "", "split_random"], [5, 3, 1, "", "split_stratified"], [5, 3, 1, "", "stats"], [5, 3, 1, "", "uniform_sampling"], [5, 3, 1, "", "uniform_sampling_index"], [5, 2, 1, "", "y"]], "quapy.data.datasets": [[5, 5, 1, "", "fetch_IFCB"], [5, 5, 1, "", "fetch_UCIBinaryDataset"], [5, 5, 1, "", "fetch_UCIBinaryLabelledCollection"], [5, 5, 1, "", "fetch_UCIMulticlassDataset"], [5, 5, 1, "", "fetch_UCIMulticlassLabelledCollection"], [5, 5, 1, "", "fetch_lequa2022"], [5, 5, 1, "", "fetch_reviews"], [5, 5, 1, "", "fetch_twitter"], [5, 5, 1, "", "warn"]], "quapy.data.preprocessing": [[5, 1, 1, "", "IndexTransformer"], [5, 5, 1, "", "index"], [5, 5, 1, "", "reduce_columns"], [5, 5, 1, "", "standardize"], [5, 5, 1, "", "text2tfidf"]], "quapy.data.preprocessing.IndexTransformer": [[5, 3, 1, "", "add_word"], [5, 3, 1, "", "fit"], [5, 3, 1, "", "fit_transform"], [5, 3, 1, "", "transform"], [5, 3, 1, "", "vocabulary_size"]], "quapy.data.reader": [[5, 5, 1, "", "binarize"], [5, 5, 1, "", "from_csv"], [5, 5, 1, "", "from_sparse"], [5, 5, 1, "", "from_text"], [5, 5, 1, "", "reindex_labels"]], "quapy.error": [[3, 5, 1, "", "absolute_error"], [3, 5, 1, "", "acc_error"], [3, 5, 1, "", "acce"], [3, 5, 1, "", "ae"], [3, 5, 1, "", "f1_error"], [3, 5, 1, "", "f1e"], [3, 5, 1, "", "from_name"], [3, 5, 1, "", "kld"], [3, 5, 1, "", "mae"], [3, 5, 1, "", "mean_absolute_error"], [3, 5, 1, "", "mean_normalized_absolute_error"], [3, 5, 1, "", "mean_normalized_relative_absolute_error"], [3, 5, 1, "", "mean_relative_absolute_error"], [3, 5, 1, "", "mkld"], [3, 5, 1, "", "mnae"], [3, 5, 1, "", "mnkld"], [3, 5, 1, "", "mnrae"], [3, 5, 1, "", "mrae"], [3, 5, 1, "", "mse"], [3, 5, 1, "", "nae"], [3, 5, 1, "", "nkld"], [3, 5, 1, "", "normalized_absolute_error"], [3, 5, 1, "", "normalized_relative_absolute_error"], [3, 5, 1, "", "nrae"], [3, 5, 1, "", "rae"], [3, 5, 1, "", "relative_absolute_error"], [3, 5, 1, "", "se"], [3, 5, 1, "", "smooth"]], "quapy.evaluation": [[3, 5, 1, "", "evaluate"], [3, 5, 1, "", "evaluate_on_samples"], [3, 5, 1, "", "evaluation_report"], [3, 5, 1, "", "prediction"]], "quapy.functional": [[3, 5, 1, "", "HellingerDistance"], [3, 5, 1, "", "TopsoeDistance"], [3, 5, 1, "", "adjusted_quantification"], [3, 5, 1, "", "argmin_prevalence"], [3, 5, 1, "", "as_binary_prevalence"], [3, 5, 1, "", "check_prevalence_vector"], [3, 5, 1, "", "get_divergence"], [3, 5, 1, "", "get_nprevpoints_approximation"], [3, 5, 1, "", "linear_search"], [3, 5, 1, "", "normalize_prevalence"], [3, 5, 1, "", "num_prevalence_combinations"], [3, 5, 1, "", "optim_minimize"], [3, 5, 1, "", "prevalence_from_labels"], [3, 5, 1, "", "prevalence_from_probabilities"], [3, 5, 1, "", "prevalence_linspace"], [3, 5, 1, "", "strprev"], [3, 5, 1, "", "uniform_prevalence_sampling"], [3, 5, 1, "", "uniform_simplex_sampling"]], "quapy.method": [[6, 0, 0, "-", "_kdey"], [6, 0, 0, "-", "_neural"], [6, 0, 0, "-", "_threshold_optim"], [6, 0, 0, "-", "aggregative"], [6, 0, 0, "-", "base"], [6, 0, 0, "-", "meta"], [6, 0, 0, "-", "non_aggregative"]], "quapy.method._kdey": [[6, 1, 1, "", "KDEBase"], [6, 1, 1, "", "KDEyCS"], [6, 1, 1, "", "KDEyHD"], [6, 1, 1, "", "KDEyML"]], "quapy.method._kdey.KDEBase": [[6, 4, 1, "", "BANDWIDTH_METHOD"], [6, 3, 1, "", "get_kde_function"], [6, 3, 1, "", "get_mixture_components"], [6, 3, 1, "", "pdf"]], "quapy.method._kdey.KDEyCS": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"], [6, 3, 1, "", "gram_matrix_mix_sum"]], "quapy.method._kdey.KDEyHD": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method._kdey.KDEyML": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method._neural": [[6, 1, 1, "", "QuaNetModule"], [6, 1, 1, "", "QuaNetTrainer"], [6, 5, 1, "", "mae_loss"]], "quapy.method._neural.QuaNetModule": [[6, 2, 1, "", "device"], [6, 3, 1, "", "forward"]], "quapy.method._neural.QuaNetTrainer": [[6, 2, 1, "", "classes_"], [6, 3, 1, "", "clean_checkpoint"], [6, 3, 1, "", "clean_checkpoint_dir"], [6, 3, 1, "", "fit"], [6, 3, 1, "", "get_params"], [6, 3, 1, "", "quantify"], [6, 3, 1, "", "set_params"]], "quapy.method._threshold_optim": [[6, 1, 1, "", "MAX"], [6, 1, 1, "", "MS"], [6, 1, 1, "", "MS2"], [6, 1, 1, "", "T50"], [6, 1, 1, "", "ThresholdOptimization"], [6, 1, 1, "", "X"]], "quapy.method._threshold_optim.MAX": [[6, 3, 1, "", "condition"]], "quapy.method._threshold_optim.MS": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"], [6, 3, 1, "", "condition"]], "quapy.method._threshold_optim.MS2": [[6, 3, 1, "", "discard"]], "quapy.method._threshold_optim.T50": [[6, 3, 1, "", "condition"]], "quapy.method._threshold_optim.ThresholdOptimization": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregate_with_threshold"], [6, 3, 1, "", "aggregation_fit"], [6, 3, 1, "", "condition"], [6, 3, 1, "", "discard"]], "quapy.method._threshold_optim.X": [[6, 3, 1, "", "condition"]], "quapy.method.aggregative": [[6, 1, 1, "", "ACC"], [6, 4, 1, "", "AdjustedClassifyAndCount"], [6, 1, 1, "", "AggregativeCrispQuantifier"], [6, 1, 1, "", "AggregativeMedianEstimator"], [6, 1, 1, "", "AggregativeQuantifier"], [6, 1, 1, "", "AggregativeSoftQuantifier"], [6, 1, 1, "", "BinaryAggregativeQuantifier"], [6, 1, 1, "", "CC"], [6, 4, 1, "", "ClassifyAndCount"], [6, 1, 1, "", "DMy"], [6, 4, 1, "", "DistributionMatchingY"], [6, 1, 1, "", "DyS"], [6, 1, 1, "", "EMQ"], [6, 4, 1, "", "ExpectationMaximizationQuantifier"], [6, 1, 1, "", "HDy"], [6, 4, 1, "", "HellingerDistanceY"], [6, 1, 1, "", "OneVsAllAggregative"], [6, 1, 1, "", "PACC"], [6, 1, 1, "", "PCC"], [6, 4, 1, "", "ProbabilisticAdjustedClassifyAndCount"], [6, 4, 1, "", "ProbabilisticClassifyAndCount"], [6, 4, 1, "", "SLD"], [6, 1, 1, "", "SMM"], [6, 5, 1, "", "newELM"], [6, 5, 1, "", "newSVMAE"], [6, 5, 1, "", "newSVMKLD"], [6, 5, 1, "", "newSVMQ"], [6, 5, 1, "", "newSVMRAE"]], "quapy.method.aggregative.ACC": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"], [6, 3, 1, "", "getPteCondEstim"], [6, 3, 1, "", "solve_adjustment"]], "quapy.method.aggregative.AggregativeMedianEstimator": [[6, 3, 1, "", "fit"], [6, 3, 1, "", "get_params"], [6, 3, 1, "", "quantify"], [6, 3, 1, "", "set_params"]], "quapy.method.aggregative.AggregativeQuantifier": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"], [6, 2, 1, "", "classes_"], [6, 2, 1, "", "classifier"], [6, 3, 1, "", "classifier_fit_predict"], [6, 3, 1, "", "classify"], [6, 3, 1, "", "fit"], [6, 3, 1, "", "quantify"], [6, 2, 1, "", "val_split"], [6, 4, 1, "", "val_split_"]], "quapy.method.aggregative.BinaryAggregativeQuantifier": [[6, 3, 1, "", "fit"], [6, 2, 1, "", "neg_label"], [6, 2, 1, "", "pos_label"]], "quapy.method.aggregative.CC": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method.aggregative.DMy": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method.aggregative.DyS": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method.aggregative.EMQ": [[6, 3, 1, "", "EM"], [6, 3, 1, "", "EMQ_BCTS"], [6, 4, 1, "", "EPSILON"], [6, 4, 1, "", "MAX_ITER"], [6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"], [6, 3, 1, "", "classify"], [6, 3, 1, "", "predict_proba"]], "quapy.method.aggregative.HDy": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method.aggregative.OneVsAllAggregative": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "classify"]], "quapy.method.aggregative.PACC": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"], [6, 3, 1, "", "getPteCondEstim"]], "quapy.method.aggregative.PCC": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method.aggregative.SMM": [[6, 3, 1, "", "aggregate"], [6, 3, 1, "", "aggregation_fit"]], "quapy.method.base": [[6, 1, 1, "", "BaseQuantifier"], [6, 1, 1, "", "BinaryQuantifier"], [6, 1, 1, "", "OneVsAll"], [6, 1, 1, "", "OneVsAllGeneric"], [6, 5, 1, "", "newOneVsAll"]], "quapy.method.base.BaseQuantifier": [[6, 3, 1, "", "fit"], [6, 3, 1, "", "quantify"]], "quapy.method.base.OneVsAllGeneric": [[6, 2, 1, "", "classes_"], [6, 3, 1, "", "fit"], [6, 3, 1, "", "quantify"]], "quapy.method.meta": [[6, 5, 1, "", "EACC"], [6, 5, 1, "", "ECC"], [6, 5, 1, "", "EEMQ"], [6, 5, 1, "", "EHDy"], [6, 5, 1, "", "EPACC"], [6, 1, 1, "", "Ensemble"], [6, 1, 1, "", "MedianEstimator"], [6, 1, 1, "", "MedianEstimator2"], [6, 5, 1, "", "ensembleFactory"], [6, 5, 1, "", "get_probability_distribution"]], "quapy.method.meta.Ensemble": [[6, 4, 1, "", "VALID_POLICIES"], [6, 2, 1, "", "aggregative"], [6, 3, 1, "", "fit"], [6, 3, 1, "", "get_params"], [6, 2, 1, "", "probabilistic"], [6, 3, 1, "", "quantify"], [6, 3, 1, "", "set_params"]], "quapy.method.meta.MedianEstimator": [[6, 3, 1, "", "fit"], [6, 3, 1, "", "get_params"], [6, 3, 1, "", "quantify"], [6, 3, 1, "", "set_params"]], "quapy.method.meta.MedianEstimator2": [[6, 3, 1, "", "fit"], [6, 3, 1, "", "get_params"], [6, 3, 1, "", "quantify"], [6, 3, 1, "", "set_params"]], "quapy.method.non_aggregative": [[6, 1, 1, "", "DMx"], [6, 4, 1, "", "DistributionMatchingX"], [6, 1, 1, "", "MaximumLikelihoodPrevalenceEstimation"]], "quapy.method.non_aggregative.DMx": [[6, 3, 1, "", "HDx"], [6, 3, 1, "", "fit"], [6, 3, 1, "", "quantify"]], "quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation": [[6, 3, 1, "", "fit"], [6, 3, 1, "", "quantify"]], "quapy.model_selection": [[3, 1, 1, "", "ConfigStatus"], [3, 1, 1, "", "GridSearchQ"], [3, 1, 1, "", "Status"], [3, 5, 1, "", "cross_val_predict"], [3, 5, 1, "", "expand_grid"], [3, 5, 1, "", "group_params"]], "quapy.model_selection.ConfigStatus": [[3, 3, 1, "", "failed"], [3, 3, 1, "", "success"]], "quapy.model_selection.GridSearchQ": [[3, 3, 1, "", "best_model"], [3, 3, 1, "", "fit"], [3, 3, 1, "", "get_params"], [3, 3, 1, "", "quantify"], [3, 3, 1, "", "set_params"]], "quapy.model_selection.Status": [[3, 4, 1, "", "ERROR"], [3, 4, 1, "", "INVALID"], [3, 4, 1, "", "SUCCESS"], [3, 4, 1, "", "TIMEOUT"]], "quapy.plot": [[3, 5, 1, "", "binary_bias_bins"], [3, 5, 1, "", "binary_bias_global"], [3, 5, 1, "", "binary_diagonal"], [3, 5, 1, "", "brokenbar_supremacy_by_drift"], [3, 5, 1, "", "error_by_drift"]], "quapy.protocol": [[3, 1, 1, "", "APP"], [3, 1, 1, "", "AbstractProtocol"], [3, 1, 1, "", "AbstractStochasticSeededProtocol"], [3, 4, 1, "", "ArtificialPrevalenceProtocol"], [3, 1, 1, "", "DomainMixer"], [3, 1, 1, "", "IterateProtocol"], [3, 1, 1, "", "NPP"], [3, 4, 1, "", "NaturalPrevalenceProtocol"], [3, 1, 1, "", "OnLabelledCollectionProtocol"], [3, 1, 1, "", "UPP"], [3, 4, 1, "", "UniformPrevalenceProtocol"]], "quapy.protocol.APP": [[3, 3, 1, "", "prevalence_grid"], [3, 3, 1, "", "sample"], [3, 3, 1, "", "samples_parameters"], [3, 3, 1, "", "total"]], "quapy.protocol.AbstractProtocol": [[3, 3, 1, "", "total"]], "quapy.protocol.AbstractStochasticSeededProtocol": [[3, 3, 1, "", "collator"], [3, 2, 1, "", "random_state"], [3, 3, 1, "", "sample"], [3, 3, 1, "", "samples_parameters"]], "quapy.protocol.DomainMixer": [[3, 3, 1, "", "sample"], [3, 3, 1, "", "samples_parameters"], [3, 3, 1, "", "total"]], "quapy.protocol.IterateProtocol": [[3, 3, 1, "", "total"]], "quapy.protocol.NPP": [[3, 3, 1, "", "sample"], [3, 3, 1, "", "samples_parameters"], [3, 3, 1, "", "total"]], "quapy.protocol.OnLabelledCollectionProtocol": [[3, 4, 1, "", "RETURN_TYPES"], [3, 3, 1, "", "get_collator"], [3, 3, 1, "", "get_labelled_collection"], [3, 3, 1, "", "on_preclassified_instances"]], "quapy.protocol.UPP": [[3, 3, 1, "", "sample"], [3, 3, 1, "", "samples_parameters"], [3, 3, 1, "", "total"]], "quapy.util": [[3, 1, 1, "", "EarlyStop"], [3, 5, 1, "", "create_if_not_exist"], [3, 5, 1, "", "create_parent_dir"], [3, 5, 1, "", "download_file"], [3, 5, 1, "", "download_file_if_not_exists"], [3, 5, 1, "", "get_quapy_home"], [3, 5, 1, "", "map_parallel"], [3, 5, 1, "", "parallel"], [3, 5, 1, "", "pickled_resource"], [3, 5, 1, "", "save_text_file"], [3, 5, 1, "", "temp_seed"], [3, 5, 1, "", "timeout"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "property", "Python property"], "3": ["py", "method", "Python method"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:property", "3": "py:method", "4": "py:attribute", "5": "py:function"}, "terms": {"": [3, 4, 5, 6], "0": [3, 4, 5, 6], "0001": 6, "001": [4, 6], "005": 3, "01": [3, 4, 6], "05": [3, 6], "063": 5, "08": 3, "081": 5, "1": [3, 4, 5, 6], "10": [3, 4, 6], "100": [3, 4, 5, 6], "1000": [5, 6], "10000": [3, 6], "10036244": [], "1024": 6, "11": 3, "110": 6, "1145": 6, "12": 4, "13": 4, "15": [3, 5], "19": 5, "1e": [3, 4, 6], "2": [3, 5, 6], "20": [3, 6], "200": 4, "2006": 6, "2008": 6, "2013": 6, "2015": [4, 6], "2016": [5, 6], "2017": [5, 6], "2018": 5, "2019": [5, 6], "2020": 4, "2021": 6, "2022": [5, 6], "21": 3, "21591": 5, "22": [4, 5], "222": 4, "23": 4, "232": 4, "24": 4, "25": [3, 4, 6], "256": 4, "26": 4, "27": 4, "27th": 5, "28": 5, "286": 5, "2dx": 6, "2frac": 3, "2nd": 6, "2t": 3, "2tp": 3, "3": [3, 4, 5, 6], "30": [5, 6], "300": 4, "3219819": 6, "3220059": 6, "3227": 3, "33": 3, "34": [5, 6], "3821": 5, "4": [3, 5], "40": 6, "4403": 5, "45": 5, "5": [3, 4, 5, 6], "50": [3, 6], "500": 6, "512": [4, 6], "5fcvx2": 5, "6": 5, "64": [4, 6], "66": 6, "67": 3, "7": [3, 4, 6], "75": 3, "8": [5, 6], "86": 5, "87": 5, "9": 3, "90": 3, "919": 5, "937": 5, "95": 3, "99": 3, "A": [3, 4, 5, 6], "By": 3, "For": [3, 5, 6], "If": [3, 5, 6], "In": [3, 4, 5, 6], "It": [3, 5], "No": [4, 6], "On": 6, "One": 6, "The": [3, 4, 5, 6], "These": [4, 6], "To": 5, "_": [3, 5, 6], "__": 6, "_f": 6, "_i": 6, "_ifcb": 5, "_kdei": 6, "_lequa2022": 5, "_neural": 6, "_threshold_optim": 6, "abc": 6, "about": [3, 5, 6], "abov": 3, "absolut": [3, 6], "absolute_error": [1, 2, 3], "abstent": 4, "abstract": [3, 4, 5, 6], "abstractprotocol": [1, 2, 3, 5], "abstractstochasticseededprotocol": [1, 2, 3], "acc": [1, 2, 3, 6], "acc_error": [1, 2, 3], "access": [5, 6], "accommod": 3, "accord": [3, 4, 5, 6], "accordingli": 6, "accuraci": [3, 6], "achiev": 6, "acm": [5, 6], "across": [3, 6], "act": 3, "actual": [5, 6], "ad": 3, "adapt": [3, 4], "add": [3, 5], "add_word": [1, 3, 5], "addit": 3, "adher": 3, "adjust": [3, 6], "adjusted_quantif": [1, 2, 3], "adjustedclassifyandcount": [1, 3, 6], "admit": 6, "adopt": 5, "advanc": 3, "advantag": 6, "ae": [1, 2, 3], "after": [3, 6], "afterward": [4, 6], "again": 3, "aggr_speedup": 3, "aggreg": [1, 2, 3], "aggregate_with_threshold": [1, 3, 6], "aggregation_fit": [1, 3, 6], "aggregative_method": [], "aggregativecrispquantifi": [1, 3, 6], "aggregativemedianestim": [1, 3, 6], "aggregativequantifi": [1, 3, 6], "aggregativesoftquantifi": [1, 3, 6], "aka": [5, 6], "akin": [3, 6], "al": [4, 5, 6], "alaiz": 6, "alegr": 6, "alexandari": [4, 6], "algorithm": [3, 5, 6], "alia": [3, 5, 6], "all": [3, 4, 5, 6], "alloc": [3, 4], "allow": [3, 4, 5, 6], "along": [3, 6], "alpha": 6, "alpha_i": 6, "alreadi": [3, 6], "also": [3, 4, 6], "altern": [3, 6], "although": 6, "alwai": 6, "amount": 3, "an": [3, 4, 5, 6], "analysi": 5, "ancestor": 6, "ani": [3, 4, 5, 6], "anoth": [3, 6], "anotherdir": 3, "anyth": 6, "anywher": 3, "api": 1, "app": [1, 2, 3, 6], "appli": [3, 4, 5, 6], "applic": 6, "approach": 6, "approxim": [3, 4], "ar": [3, 4, 5, 6], "archiv": 5, "archive_filenam": 3, "arg": [3, 4, 5, 6], "argmax": 3, "argmin_preval": [1, 2, 3], "args_i": 3, "argument": [3, 5, 6], "around": [5, 6], "arrai": [3, 4, 5, 6], "artifici": 3, "artificialprevalenceprotocol": [1, 2, 3], "as_binary_preval": [1, 2, 3], "asarrai": 3, "asdataload": [1, 3, 4], "assert": 5, "assign": [3, 5], "associ": 3, "assum": 6, "assumpion": 6, "attach": 5, "attempt": 6, "attribut": 6, "author": 6, "auto": 3, "automat": 4, "av": 6, "avail": [4, 5, 6], "averag": [3, 5, 6], "avoid": 3, "ax": 6, "axi": 3, "b": [3, 5, 6], "backend": [3, 6], "balanc": 6, "band": 3, "bandwidth": 6, "bandwidth_method": [1, 3, 6], "bar": 3, "barranquero": [4, 6], "base": [1, 2, 3, 4], "base_method": [], "base_quantifi": 6, "base_quantifier_class": 6, "baseestim": [4, 6], "basequantifi": [1, 3, 6], "basic": [5, 6], "batch": 4, "batch_siz": 4, "batch_size_test": 4, "bct": [4, 6], "bctscalibr": [1, 3, 4], "bean": 5, "beat": [4, 6], "been": [3, 4, 5, 6], "befor": [3, 4, 5, 6], "beforehand": 3, "begin": 3, "behaviour": 3, "being": [3, 6], "belong": 6, "below": [3, 5], "benchmark": [], "best": [3, 4, 6], "best_epoch": 3, "best_model": [1, 2, 3], "best_scor": 3, "better": 6, "between": [3, 4, 6], "bia": [3, 4, 6], "bidirect": 6, "bin": [3, 6], "binar": [1, 3, 5], "binari": [1, 3, 4, 5, 6], "binary_bias_bin": [1, 2, 3], "binary_bias_glob": [1, 2, 3], "binary_diagon": [1, 2, 3], "binary_quantifi": 6, "binaryaggregativequantifi": [1, 3, 6], "binaryquantifi": [1, 3, 6], "binom": 3, "block": 3, "boldsymbol": 6, "bool": [3, 6], "boolean": [3, 5, 6], "both": 5, "bound": [3, 6], "box": 3, "brief": 5, "bring": 6, "broken": 3, "brokenbar_supremacy_by_drift": [1, 2, 3], "buns": 6, "bypass": 6, "c": [3, 4, 5, 6], "calcul": 3, "calibr": [1, 2, 3], "calibratorfactori": 4, "call": [3, 5, 6], "callabl": [3, 5, 6], "can": [3, 5, 6], "cannot": 6, "care": 6, "carlo": 6, "carri": [3, 5, 6], "case": [3, 4, 5, 6], "castano": 5, "castro": 6, "categor": 5, "categori": 3, "cauchi": 6, "cc": [1, 3, 6], "cdf": 6, "cell": 6, "center": 6, "central": 3, "ch": 6, "chang": 5, "channel": 6, "characteriz": 5, "charg": [3, 5], "chart": 3, "check": 3, "check_dataframe_format": [], "check_file_format": [], "check_prevalence_vector": [1, 2, 3], "checkpoint": [4, 6], "checkpointdir": 6, "checkpointnam": 6, "checkpointpath": 4, "child": 3, "choic": 6, "choos": 6, "chosen": 3, "class": [3, 4, 5, 6], "class2int": 5, "class_weight": 6, "classes_": [1, 3, 4, 5, 6], "classif": [1, 2, 3, 5, 6], "classif_posterior": 6, "classif_predict": 6, "classifi": [1, 3, 4, 6], "classification_fit": 6, "classifier_fit_predict": [1, 3, 6], "classifier_net": 4, "classifiermixin": 4, "classifyandcount": [1, 3, 6], "classmethod": [3, 5, 6], "classnam": 5, "classs": 3, "clean_checkpoint": [1, 3, 6], "clean_checkpoint_dir": [1, 3, 6], "clef": 5, "clip": 3, "clip_if_necessari": 3, "close": [3, 5, 6], "closest": 6, "cm": 3, "cnn": 6, "cnnnet": [1, 3, 4, 6], "code": 4, "codefram": 5, "codifi": 5, "col": 5, "collat": [1, 2, 3], "collect": [3, 4, 5, 6], "collet": 5, "color": 3, "colormap": 3, "column": [3, 5], "com": [1, 3], "combin": [3, 6], "combinations_budget": 3, "come": [3, 5, 6], "common": 6, "compar": 3, "compat": 6, "competit": 5, "complement": 6, "complet": [3, 6], "compon": [3, 4, 6], "comput": [3, 6], "conceptu": 6, "condit": [1, 3, 6], "conduct": 3, "confer": [4, 5], "confid": 3, "configstatu": [1, 2, 3], "configur": [3, 6], "conform": 5, "connect": 6, "consecut": [3, 4, 5, 6], "consid": [3, 4, 5, 6], "consist": [3, 4, 5, 6], "constrain": [3, 5], "construct": 6, "consult": 6, "contain": [1, 3, 4, 5, 6], "contanin": 3, "content": 2, "context": 3, "control": 3, "conveni": 3, "converg": 6, "convert": [3, 4, 5, 6], "convolut": 4, "copi": [3, 5], "correct": [4, 6], "correctli": 3, "correspond": [5, 6], "count": [1, 3, 5, 6], "counter": 5, "countvector": 5, "covari": [5, 6], "cover": [3, 4], "coz": 5, "cpu": [4, 6], "creat": [3, 6], "create_if_not_exist": [1, 2, 3], "create_parent_dir": [1, 2, 3], "crip": 6, "crisp": [3, 6], "criteria": 5, "criterion": 6, "cross": [3, 4, 5, 6], "cross_val_predict": [1, 2, 3], "csr": 5, "csr_matrix": 5, "csv": 5, "cuda": [4, 6], "cumberson": 3, "current": [3, 4, 5, 6], "custom": [3, 5], "d": 6, "d_": 3, "dat": 4, "data": [1, 2, 3, 4, 6], "data_hom": 5, "datafram": 3, "dataload": 4, "datapoint": 6, "dataset": [1, 2, 3, 4, 6], "dataset_nam": 5, "deactiv": 3, "decaesteck": 6, "decai": 4, "decid": [3, 5], "decis": [3, 4, 6], "decision_funct": [1, 3, 4, 6], "decomposit": 4, "dedic": 5, "deep": [3, 6], "def": 3, "default": [3, 4, 5, 6], "defin": [3, 4, 5, 6], "degener": 6, "del": 5, "delai": 3, "delet": 4, "deliv": 6, "delta": 6, "denomin": 6, "dens": 6, "densiti": [3, 6], "depend": [3, 6], "describ": [3, 6], "descript": 5, "desir": [3, 5], "destin": 3, "detail": [4, 5, 6], "determin": 3, "determinist": 3, "devel": 5, "deviat": [3, 5], "devic": [1, 3, 4, 6], "df": [], "di": 6, "diagon": 3, "dict": [3, 5, 6], "dictionari": [3, 4, 5, 6], "differ": [3, 5, 6], "dij": 6, "dimens": [1, 3, 4, 5, 6], "dimension": [3, 4, 5, 6], "dir": [3, 6], "directori": [3, 4, 5, 6], "discard": [1, 3, 6], "discret": [3, 6], "disjoint": 4, "disk": [3, 5], "disntac": 6, "displai": [3, 4], "displaystyl": 3, "dissimilar": 6, "distanc": [3, 6], "distant": 3, "distribut": [3, 5, 6], "distributionmatch": [], "distributionmatchingi": [1, 3, 6], "distributionmatchingx": [1, 3, 6], "diverg": [3, 6], "divid": 3, "dl": 6, "dmx": [1, 3, 6], "dmy": [1, 3, 6], "do": [3, 4, 5, 6], "doc_embed": 6, "doc_embedding_s": 6, "doc_posterior": 6, "document": [4, 5, 6], "document_embed": [1, 3, 4], "doe": [3, 6], "doi": 6, "domain": 3, "domaina": 3, "domainb": 3, "domainmix": [1, 2, 3], "dot": 3, "dowload": 3, "down": [3, 5, 6], "download": [3, 5], "download_fil": [1, 2, 3], "download_file_if_not_exist": [1, 2, 3], "draw": 3, "drawn": [3, 5], "drop": 4, "drop_p": 4, "dropout": [4, 6], "dry": 5, "dtype": 5, "dump": 5, "dure": 6, "dx": 6, "dy": [1, 3, 6], "dynam": [4, 5, 6], "e": [3, 4, 5, 6], "eacc": [1, 3, 6], "each": [3, 4, 5, 6], "earli": [3, 4, 6], "earlystop": [1, 2, 3], "easili": 4, "ecc": [1, 3, 6], "ecml": 6, "edu": 5, "eemq": [1, 3, 6], "ehdi": [1, 3, 6], "either": [3, 6], "element": [3, 5, 6], "elm": 6, "em": [1, 3, 6], "emb": 4, "embed": [4, 6], "embed_s": 4, "embedding_s": 4, "emploi": 6, "empti": 5, "emq": [1, 3, 6], "emq_bct": [1, 3, 6], "enabl": 4, "encod": 5, "end": [3, 6], "end_msg": 3, "endeavour": 3, "endow": 3, "enforc": 3, "ensembl": [1, 3, 5, 6], "ensemblefactori": [1, 3, 6], "ensur": 3, "entir": 3, "entri": 6, "enum": 3, "enumer": 3, "environ": [3, 6], "ep": 3, "epacc": [1, 3, 6], "epoch": [3, 4, 6], "epsilon": [1, 3, 6], "equal": [3, 6], "equat": 6, "equidist": 3, "equival": 6, "err_nam": 3, "error": [1, 2, 4, 6], "error_by_drift": [1, 2, 3], "error_metr": 3, "error_nam": 3, "especi": 3, "establish": 3, "estim": [3, 4, 5, 6], "estim_prev": 3, "estim_preval": 6, "estimant": 6, "esuli": [4, 5, 6], "et": [4, 5, 6], "evaltestcas": [], "evalu": [1, 2, 4, 5, 6], "evaluate_on_sampl": [1, 2, 3], "evaluation_report": [1, 2, 3], "evalut": 6, "even": 3, "eventu": [4, 5], "everi": [3, 6], "exact": [5, 6], "exact_train_prev": 6, "exampl": [3, 4, 5, 6], "exce": 3, "except": [3, 6], "exhaust": 3, "exist": [3, 6], "exist_ok": 3, "expand": 3, "expand_grid": [1, 2, 3], "expect": 6, "expectationmaximizationquantifi": [1, 3, 6], "experi": [3, 5], "explicit": 6, "explor": 3, "express": 5, "extend": [3, 6], "extens": 6, "extract": [3, 5, 6], "f": [5, 6], "f1": [3, 4], "f1_error": [1, 2, 3], "f1e": [1, 2, 3], "f_1": 3, "factor": 3, "factori": 6, "fail": [1, 2, 3, 6], "fals": [3, 4, 5, 6], "famili": 6, "far": [3, 4, 5], "fare": 3, "fast": [3, 5], "faster": 5, "feat1": 5, "feat2": 5, "featn": 5, "featur": [5, 6], "feature_extract": 5, "fetch_ifcb": [1, 3, 5], "fetch_lequa2022": [1, 3, 5], "fetch_review": [1, 3, 5, 6], "fetch_twitt": [1, 3, 5], "fetch_ucibinarydataset": [1, 3, 5], "fetch_ucibinarylabelledcollect": [1, 3, 5], "fetch_ucilabelledcollect": 5, "fetch_ucimulticlassdataset": [1, 3, 5], "fetch_ucimulticlasslabelledcollect": [1, 3, 5], "ff": 6, "ff_layer": 6, "file": [3, 4, 5, 6], "filenam": 3, "final": 6, "find": 6, "first": [3, 5, 6], "fit": [1, 2, 3, 4, 5, 6], "fit_classifi": 6, "fit_cv": [1, 3, 4], "fit_tr_val": [1, 3, 4], "fit_transform": [1, 3, 5], "flag": 3, "float": [3, 4, 5, 6], "fn": 3, "fold": [3, 5, 6], "folder": [5, 6], "follow": [3, 5, 6], "fomart": 5, "for_model_select": 5, "forc": 3, "form": [3, 5, 6], "forman": 6, "format": [3, 5, 6], "former": 6, "forward": [1, 3, 4, 6], "found": [3, 4, 5, 6], "fp": 3, "fpr": [3, 6], "frac": [3, 6], "fraction": 6, "framework": [1, 6], "franc": 6, "frequenc": [5, 6], "from": [3, 4, 5, 6], "from_csv": [1, 3, 5], "from_nam": [1, 2, 3], "from_spars": [1, 3, 5], "from_text": [1, 3, 5], "full": [3, 5], "fulli": 3, "func": 3, "function": [1, 2, 4, 5, 6], "further": [4, 5, 6], "fusion": 5, "g": [3, 5, 6], "gain": 3, "gao": [5, 6], "gap": 5, "gasp": 5, "gen": 3, "gener": [3, 4, 5, 6], "generation_func": 3, "get": [3, 4, 5, 6], "get_col": [1, 2, 3], "get_diverg": [1, 2, 3], "get_kde_funct": [1, 3, 6], "get_labelled_collect": [1, 2, 3], "get_mixture_compon": [1, 3, 6], "get_nprevpoints_approxim": [1, 2, 3], "get_param": [1, 2, 3, 4, 6], "get_probability_distribut": [1, 3, 6], "get_quapy_hom": [1, 2, 3], "getptecondestim": [1, 3, 6], "github": [], "give": 6, "given": [3, 4, 5, 6], "global": 3, "goal": 6, "goe": 3, "gonz\u00e1lez": [5, 6], "got": 6, "gpu": [4, 6], "gram_matrix_mix_sum": [1, 3, 6], "greater": 5, "grenobl": 6, "grid": [3, 6], "gridsearchcv": 6, "gridsearchq": [1, 2, 3, 6], "ground": 6, "ground_truth_path": [], "group_param": [1, 2, 3], "guarante": [3, 5, 6], "guid": 5, "g\u00e1llego": [5, 6], "h": 6, "ha": [3, 4, 5, 6], "had": 5, "handl": 3, "hard": [3, 4, 6], "harmon": 3, "hat": [3, 6], "have": [3, 5, 6], "hcr": 5, "hd": [3, 6], "hdx": [1, 3, 6], "hdy": [1, 3, 6], "held": [3, 4, 6], "helling": 6, "hellingerdist": [1, 2, 3], "hellingerdistancei": [1, 3, 6], "hellingh": 3, "help": 6, "helper": 3, "henc": [3, 5, 6], "here": 6, "heurist": 6, "hidden": [4, 6], "hidden_s": 4, "hierarchytestcas": [], "high": 3, "highlight": 3, "hightlight": 3, "histogram": 6, "hlt": 1, "hold": [3, 6], "home": [3, 5], "hook": 6, "host": 1, "host_fold": 4, "how": [3, 5, 6], "howev": 3, "hp": 5, "hsosik": [], "html": 5, "http": [1, 3, 5, 6], "hyper": [3, 4, 6], "hyperparamet": [3, 6], "i": [1, 3, 4, 5, 6], "ic": 5, "id": 5, "ifcb": 5, "ifcb_zenodo": [], "ifcbtestsampl": 5, "ifcbtrainsamplesfromdir": 5, "ignor": [3, 5, 6], "ii": 3, "iid": 6, "imdb": 5, "implement": [3, 4, 5, 6], "implicit": 3, "import": [5, 6], "impos": 3, "improv": [3, 4, 6], "in_plac": 3, "includ": [1, 5, 6], "inconveni": 3, "independ": [3, 6], "index": [1, 3, 4, 5, 6], "indextransform": [1, 3, 5], "indic": [3, 4, 5, 6], "individu": 5, "ineffici": 3, "infer": 5, "inform": [3, 4, 5, 6], "infrequ": 5, "inherit": 3, "initi": [4, 6], "inplac": [5, 6], "input": [3, 4, 5, 6], "instal": [4, 6], "instanc": [3, 4, 5, 6], "instanti": [3, 4, 6], "instead": [3, 5, 6], "int": [3, 5, 6], "integ": [3, 4, 5, 6], "interest": 3, "interfac": 6, "intern": [4, 5, 6], "interpret": 6, "interv": 3, "intract": 3, "invalid": [1, 2, 3], "invok": [3, 5], "involv": 3, "irrespect": 6, "isomer": 3, "isometr": 3, "issu": [3, 6], "isti": 1, "item": 3, "iter": [3, 5, 6], "iterateprotocol": [1, 2, 3], "iterrow": [], "its": [3, 4, 6], "itself": [3, 6], "j": [5, 6], "joachim": [4, 6], "joblib": 6, "join": [1, 3, 5], "k": [3, 4, 5, 6], "kde": 6, "kdebas": [1, 3, 6], "kdei": 6, "kdeyc": [1, 3, 6], "kdeyhd": [1, 3, 6], "kdeyml": [1, 3, 6], "keep": [3, 5], "kei": [3, 5], "kept": 5, "kernel": [4, 6], "kernel_height": 4, "kerneldens": 6, "keyword": [5, 6], "kfcv": [1, 3, 4, 5, 6], "kindl": [5, 6], "kl": 3, "kld": [1, 2, 3, 4, 6], "knowledg": 5, "known": [3, 6], "kraemer": 3, "kullback": [3, 6], "kundaj": 4, "kwarg": [4, 5, 6], "l": 6, "l1": [3, 6], "l2": 6, "label": [3, 4, 5, 6], "labelcollectiontestcas": [], "labelled_collect": 3, "labelledcollect": [1, 3, 5, 6], "larg": 3, "larger": [3, 5, 6], "largest": 3, "last": [3, 4, 5], "latinn": 6, "latter": 6, "launch": 3, "layer": [4, 6], "lazi": 6, "ldot": 6, "lead": 5, "learn": [3, 4, 5, 6], "learner": [4, 6], "least": 5, "leav": 5, "left": [3, 5, 6], "legend": 3, "leibler": [3, 6], "len": 3, "length": [4, 5], "lequa": 5, "lequa2022_experi": 5, "less": [3, 5], "let": [3, 6], "leyend": 3, "like": [3, 4, 5, 6], "likelihood": [4, 6], "limit": [3, 6], "line": 3, "linear": [3, 6], "linear_model": 4, "linear_search": [1, 2, 3], "linearsvc": 5, "link": 5, "list": [3, 4, 5, 6], "listedcolormap": 3, "literatur": 3, "load": [1, 3, 5, 6], "load_category_map": [], "load_fn": [], "load_raw_docu": [], "load_vector_docu": [], "loader": 5, "loader_func": 5, "loader_kwarg": 5, "local": 3, "log": [3, 5, 6], "logist": [4, 6], "logisticregress": [4, 6], "logscal": 3, "logspac": 6, "loki": [3, 6], "long": 4, "longer": [3, 6], "longest": 4, "look": 6, "loop": 6, "loss": [3, 4, 6], "lost": 3, "low": [3, 4], "lower": 6, "lower_is_bett": 3, "lowranklogisticregress": [1, 3, 4], "lpha": [], "lq": 6, "lr": [4, 6], "lstm": [4, 6], "lstm_class_nlay": 4, "lstm_hidden_s": 6, "lstm_nlayer": 6, "lstmnet": [1, 3, 4], "m": [1, 3, 6], "machin": 4, "macro": 3, "made": [3, 5, 6], "mae": [1, 2, 3, 4, 6], "mae_loss": [1, 3, 6], "mai": [3, 6], "maintain": 6, "make": [3, 6], "makedir": 3, "manag": 5, "mani": [3, 6], "manner": [4, 6], "map": [4, 6], "map_parallel": [1, 2, 3], "margin": [4, 6], "mark": 3, "mass": 3, "match": 6, "math": [3, 6], "mathbb": 6, "mathcal": [3, 6], "mathrm": 6, "matplotlib": 3, "matric": 5, "matrix": [3, 6], "max": [1, 3, 6], "max_it": [1, 3, 6], "max_sample_s": 6, "maxim": 6, "maximum": [3, 4, 6], "maximumlikelihoodprevalenceestim": [1, 3, 6], "mean": [3, 4, 5, 6], "mean_absolute_error": [1, 2, 3], "mean_normalized_absolute_error": [1, 2, 3], "mean_normalized_relative_absolute_error": [1, 2, 3], "mean_relative_absolute_error": [1, 2, 3], "meant": 6, "measur": [3, 6], "median": 6, "medianestim": [1, 3, 6], "medianestimator2": [1, 3, 6], "medianquantifi": [], "member": 6, "memori": 4, "merchandis": 5, "messag": 6, "met": 5, "meta": [1, 2, 3], "method": [1, 2, 3], "method_nam": 3, "method_ord": 3, "methodnam": [], "metric": [3, 6], "might": [3, 5, 6], "mimick": 6, "min_": [3, 6], "min_df": [5, 6], "min_po": 6, "minim": [3, 6], "minimum": [5, 6], "minimun": 5, "mining6": 5, "minu": 3, "misclassif": 6, "misclassificatin": 6, "miss": 3, "mixtur": [3, 6], "mixture_point": 3, "mkld": [1, 2, 3, 6], "ml": [5, 6], "mlpe": 6, "mnae": [1, 2, 3, 6], "mnkld": [1, 2, 3, 6], "mnrae": [1, 2, 3, 6], "mock": [3, 4], "mock_labelled_collect": [], "model": [3, 4, 5, 6], "model_select": [1, 2, 6], "modif": 3, "modifi": 3, "modseltestcas": [], "modul": [0, 1, 2], "monitor": 3, "mont": 6, "montecarlo_tri": 6, "more": [3, 5, 6], "moreo": [5, 6], "most": [3, 5, 6], "mrae": [1, 2, 3, 4, 6], "ms2": [1, 3, 6], "mse": [1, 2, 3, 6], "msg": 3, "multi": 6, "multiclass": [3, 5, 6], "multipli": 3, "multiprocess": [3, 6], "multivari": 4, "must": [5, 6], "mutual": 6, "my_arrai": 3, "my_collect": 5, "mytestcas": [], "n": [3, 4, 6], "n_bin": [3, 6], "n_categori": [], "n_class": [1, 3, 4, 5, 6], "n_compon": 4, "n_dimens": [4, 6], "n_epoch": 6, "n_featur": [4, 6], "n_instanc": [3, 4, 6], "n_job": [3, 4, 5, 6], "n_preval": 3, "n_prevpoint": 3, "n_repeat": 3, "n_sampl": [3, 4], "n_test": 5, "n_train": 5, "nae": [1, 2, 3], "name": [3, 4, 5, 6], "natur": 3, "naturalprevalenceprotocol": [1, 2, 3], "nbin": [3, 6], "nbv": [4, 6], "nbvscalibr": [1, 3, 4], "ndarrai": [3, 5, 6], "necessari": [3, 6], "need": [3, 5, 6], "neg": [3, 6], "neg_label": [1, 3, 6], "nest": 6, "net": 4, "network": [3, 4, 5, 6], "neural": [1, 2, 3, 5, 6], "neuralclassifiertrain": [1, 3, 4, 6], "never": 3, "new": [3, 5], "newelm": [1, 3, 6], "newonevsal": [1, 3, 6], "newsvma": [1, 3, 6], "newsvmkld": [1, 3, 6], "newsvmq": [1, 3, 6], "newsvmra": [1, 3, 6], "next": [3, 4, 5], "nfeat": 6, "nfold": [3, 5], "nkld": [1, 2, 3, 4, 6], "nn": 4, "nogap": 5, "non": 6, "non_aggreg": [1, 2, 3], "non_aggregative_method": [], "none": [3, 4, 5, 6], "norm": 6, "normal": [3, 5, 6], "normalize_preval": [1, 2, 3], "normalized_absolute_error": [1, 2, 3], "normalized_relative_absolute_error": [1, 2, 3], "note": [3, 5], "noth": 6, "novemb": 4, "np": [3, 5, 6], "npp": [1, 2, 3], "nrae": [1, 2, 3], "nrepeat": 5, "num_prevalence_combin": [1, 2, 3], "number": [3, 4, 5, 6], "numer": [3, 5, 6], "numpi": [3, 4], "o": 3, "object": [3, 4, 5, 6], "observ": 6, "obtain": [3, 4, 6], "obtaind": 3, "obvious": 3, "occur": 5, "occurr": 5, "off": [4, 6], "offici": 5, "oldsymbol": [], "omd": 5, "on_preclassified_inst": [1, 2, 3], "onc": [3, 5], "one": [3, 5, 6], "ones": [3, 5, 6], "onevsal": [1, 3, 6], "onevsallaggreg": [1, 3, 6], "onevsallgener": [1, 3, 6], "onlabelledcollectionprotocol": [1, 2, 3], "onli": [3, 4, 5, 6], "open": [1, 3, 5], "optim": [3, 4, 6], "optim_minim": [1, 2, 3, 6], "option": [5, 6], "order": [3, 5, 6], "order_bi": 6, "org": [5, 6], "orient": [3, 6], "origin": [3, 5, 6], "other": [3, 5, 6], "otherwis": [3, 5, 6], "out": [3, 4, 5, 6], "outer": 3, "outlier": 3, "output": [3, 4, 5, 6], "outsid": 6, "over": 3, "overal": 3, "overridden": 6, "overview": 5, "p": [1, 3, 4, 5, 6], "p_": 6, "p_i": 3, "p_x": 6, "pacc": [1, 3, 6], "packag": [1, 2], "pad": [4, 5], "pad_length": 4, "padding_length": 4, "page": 1, "pair": 3, "panda": 3, "paper": [4, 6], "parallel": [1, 2, 3, 4, 5, 6], "parallel_backend": 6, "param": [3, 4, 6], "param_grid": [3, 6], "param_mod_sel": 6, "param_model_sel": 6, "paramet": [3, 4, 5, 6], "parameter": 6, "parent": 3, "parllel": 6, "part": 5, "particular": 6, "partit": [3, 4], "pass": [3, 4, 6], "patch": [4, 6], "path": [3, 4, 5, 6], "path_dir": [], "patienc": [3, 4, 6], "pcc": [1, 3, 6], "pdf": [1, 3, 6], "percentil": 3, "perf": [4, 6], "perform": [3, 4, 6], "perman": 3, "pglez82": [], "phase": 6, "pickl": [3, 5, 6], "pickle_path": 3, "pickled_resourc": [1, 2, 3], "pip": 1, "pipelin": 6, "pkdd": 6, "pkl": 3, "place": [3, 5], "plankton": 5, "pleas": 5, "plot": [1, 2], "pmlr": 4, "point": [3, 5], "polici": 6, "pos_class": [3, 5], "pos_label": [1, 3, 6], "posit": [3, 5, 6], "positive_preval": 3, "possibl": [3, 6], "post": 3, "posterior": [3, 4, 6], "posterior_prob": 6, "power": 3, "pp": 4, "pre": 3, "pre_classif": 3, "prec": 3, "preced": 5, "precis": 3, "precomput": 5, "predefin": 5, "predict": [1, 2, 3, 4, 6], "predict_on": 6, "predict_proba": [1, 3, 4, 6], "prefer": 3, "prefix": [], "preliminari": 6, "prepar": 3, "preprocess": [1, 2, 3, 6], "present": 5, "preserv": [3, 5], "prev": [3, 5], "preval": [1, 3, 4, 5, 6], "prevalence_estim": 3, "prevalence_from_label": [1, 2, 3], "prevalence_from_prob": [1, 2, 3], "prevalence_grid": [1, 2, 3], "prevalence_linspac": [1, 2, 3], "prevalence_valu": [], "prevel": 6, "previous": [3, 6], "prevs_estim": 6, "prevs_hat": 3, "princip": 4, "print": [3, 4, 5], "prior": [3, 6], "probabilist": [1, 3, 4, 6], "probabilisticadjustedclassifyandcount": [1, 3, 6], "probabilisticclassifyandcount": [1, 3, 6], "probabl": [3, 4, 6], "problem": [3, 5, 6], "procedur": 3, "proceed": [5, 6], "process": [3, 5], "produc": 3, "product": 5, "progress": 5, "proper": 6, "properli": 6, "properti": [3, 4, 5, 6], "proport": [4, 5, 6], "propos": 6, "protocol": [1, 2, 5, 6], "provid": [5, 6], "ptecondestim": 6, "ptr": 6, "publicli": 5, "purpos": 6, "put": 6, "py": 5, "python": [1, 5], "pytorch": 6, "p\u00e9rez": [5, 6], "q": [3, 4, 6], "q_": 6, "q_i": 3, "qacc": 4, "qdrop_p": 6, "qf1": 4, "qgm": 4, "qp": [3, 5, 6], "quanet": [4, 6], "quanetmodul": [1, 3, 6], "quanettrain": [1, 3, 6], "quantif": [0, 1, 3, 4, 5, 6], "quantifi": [1, 2, 3, 5, 6], "quantification_error": 3, "quantiti": 3, "quapy_data": 3, "quay_data": 5, "que": 3, "question": 3, "quevedo": 5, "quick": 5, "quit": 3, "r": [3, 5, 6], "rae": [1, 2, 3], "rais": [3, 6], "raise_error": 3, "raise_except": 3, "rand": 3, "random": [3, 5], "random_se": 3, "random_st": [1, 2, 3, 5, 6], "randomli": 5, "rang": [3, 6], "rank": [4, 6], "rare": 5, "rate": [3, 4, 6], "raw": [3, 5], "re": [4, 5], "reach": 6, "read": 5, "reader": [1, 2, 3], "real": [3, 4, 5, 6], "realiz": 3, "reason": 6, "recal": 3, "recalib": 6, "recalibr": 6, "recalibratedprobabilisticclassifi": [1, 3, 4], "recalibratedprobabilisticclassifierbas": [1, 3, 4], "recip": 6, "recommend": 6, "recomput": 6, "record": [], "recurr": 5, "recurs": 6, "red_siz": 6, "reduc": [1, 3, 5], "reduce_column": [1, 3, 5], "refer": [4, 5], "refit": 3, "regardless": 5, "regim": 3, "region": 3, "regist": 6, "regress": 4, "reindex_label": [1, 3, 5], "reiniti": 4, "rel": [3, 5, 6], "relative_absolute_error": [1, 2, 3], "reli": [3, 6], "remaind": 6, "remov": [5, 6], "repeat": 3, "repetit": 3, "replac": [3, 5], "replic": 3, "repo": 5, "report": [3, 6], "repositori": 5, "repr_siz": 4, "repres": [3, 5, 6], "represent": [3, 4, 6], "reproduc": [3, 5], "request": [3, 5, 6], "requir": [4, 5, 6], "reset_net_param": [1, 3, 4], "resourc": 3, "resp": 6, "respect": [3, 6], "rest": [3, 4, 5], "result": [3, 6], "resultsubmiss": [], "retain": [4, 6], "retrain": 4, "return": [3, 4, 5, 6], "return_constrained_dim": 3, "return_typ": [1, 2, 3], "reus": [3, 5], "review": 5, "reviews_sentiment_dataset": 5, "rgmin_": [], "right": [3, 5, 6], "rodr\u00edguez": 6, "round": 5, "routin": [3, 5, 6], "row": 5, "run": [3, 5, 6], "runtest": [], "saeren": 6, "same": [3, 5, 6], "sampl": [1, 2, 3, 4, 5, 6], "sample_id": [], "sample_prev": 3, "sample_s": [3, 6], "samples_paramet": [1, 2, 3], "samples_to_str": [], "samplesfromdir": 5, "sampling_from_index": [1, 3, 5], "sampling_index": [1, 3, 5], "sander": 5, "sanity_check": 3, "save": [3, 5], "save_text_fil": [1, 2, 3], "savepath": 3, "scale": [3, 4, 6], "scall": 5, "schwarz": 6, "scikit": [3, 4, 5, 6], "scipi": [3, 5], "score": [3, 4, 5, 6], "scott": 6, "script": [5, 6], "se": [1, 2, 3], "search": [1, 3, 6], "sebastiani": [5, 6], "second": [3, 5], "secondari": 3, "see": [3, 4, 5, 6], "seed": [3, 5, 6], "seen": [3, 6], "select": [3, 5, 6], "self": [3, 4, 5, 6], "semeval13": 5, "semeval14": 5, "semeval15": 5, "semeval16": 5, "sens": 3, "sentenc": 5, "sentiment": 5, "separ": [3, 5], "sequenc": 3, "seri": 5, "serv": [3, 5], "set": [3, 4, 5, 6], "set_param": [1, 2, 3, 4, 6], "setup": 6, "sever": 5, "shape": [3, 4, 5, 6], "share": 5, "shift": [3, 4, 6], "short": 4, "shorter": 4, "should": [3, 4, 5, 6], "show": [3, 4, 5, 6], "show_dens": 3, "show_legend": 3, "show_std": 3, "shown": 3, "shrikumar": 4, "shuffl": [4, 5], "side": 3, "sign": 3, "significantli": 3, "silent": [3, 6], "silverman": 6, "sim_": 6, "similar": [3, 6], "simpl": [3, 6], "simplex": 3, "simpli": [3, 6], "simplif": 6, "sinc": [5, 6], "singl": [3, 6], "single_sample_train": 5, "site": [], "size": [3, 4, 5, 6], "skip": 3, "sklearn": [4, 5, 6], "sld": [1, 3, 6], "sleep": 3, "slice": 3, "slsqp": 3, "smallest": 3, "smm": [1, 3, 6], "smooth": [1, 2, 3], "smooth_limits_epsilon": 3, "so": [3, 4, 5, 6], "social": 5, "soft": 6, "solut": [3, 6], "solv": 6, "solve_adjust": [1, 3, 6], "solver": 6, "some": [3, 5, 6], "some_arrai": 3, "sort": 6, "sought": 6, "sourc": [1, 3, 4, 5, 6], "space": [3, 4, 6], "spars": 5, "special": 5, "specif": [3, 6], "specifi": [3, 4, 5, 6], "spectrum": 3, "speed": [3, 6], "sperduti": 5, "split": [3, 4, 5, 6], "split_random": [1, 3, 5], "split_stratifi": [1, 3, 5], "splitstratifi": [1, 3, 5], "spmatrix": 5, "sqrt": [3, 6], "squar": [3, 6], "sst": 5, "stabil": 6, "stabl": 5, "stackexchang": 3, "stand": [3, 6], "standard": [1, 3, 4, 5, 6], "star": 3, "start_msg": 3, "stat": [1, 3, 5], "state": 3, "static": 6, "statist": [3, 6], "stats_siz": 6, "statu": [1, 2, 3], "std": 4, "stdout": 3, "step": [3, 6], "stop": [3, 4, 6], "store": [4, 5, 6], "str": [3, 5, 6], "stratif": 5, "stratifi": [4, 5, 6], "stride": 4, "string": [3, 5, 6], "strprev": [1, 2, 3], "structur": 6, "studi": 5, "style": 5, "subclass": [5, 6], "subdir": 3, "sublinear_tf": 5, "submodul": [1, 2], "subobject": 6, "subpackag": [1, 2], "subsequ": 5, "subtract": [3, 5], "subtyp": 5, "success": [1, 2, 3], "suit": 5, "sum": [3, 6], "sum_": [3, 6], "support": [5, 6], "surfac": 5, "svm": [4, 5, 6], "svm_perf_classifi": 4, "svm_perf_learn": 4, "svmperf": [1, 2, 3, 6], "svmperf_bas": [4, 6], "svmperf_hom": 6, "sweep": 6, "system": 6, "t": [3, 4, 6], "t1a": 5, "t1b": 5, "t2a": 5, "t2b": 5, "t50": [1, 3, 6], "tab10": 3, "tail": 3, "tail_density_threshold": 3, "take": [3, 5, 6], "taken": [3, 4, 5, 6], "target": [3, 4, 6], "task": 5, "te": 5, "temp": 6, "temp_se": [1, 2, 3], "temperatur": [4, 6], "tempor": [3, 4], "tensor": 4, "term": [3, 4, 5, 6], "ternari": 6, "test": [3, 4, 5, 6], "test_aggreg": [], "test_aggregative_method": [], "test_app_not_repl": [], "test_app_numb": [], "test_app_repl": [], "test_app_sanity_check": [], "test_bas": [], "test_binari": [], "test_covariate_shift_not_repl": [], "test_covariate_shift_repl": [], "test_dataset": [], "test_ensemble_method": [], "test_eval_speedup": [], "test_evalu": [], "test_evaluation_output": [], "test_fetch_lequa2022": [], "test_fetch_review": [], "test_fetch_twitt": [], "test_fetch_ucidataset": [], "test_fetch_ucimultidataset": [], "test_gen": 5, "test_hierarchi": [], "test_import": [], "test_join": [], "test_kraemer_not_repl": [], "test_kraemer_repl": [], "test_labelcollect": [], "test_median_meta": [], "test_median_meta_modsel": [], "test_method": [], "test_modsel": [], "test_modsel_parallel": [], "test_modsel_parallel_speedup": [], "test_modsel_timeout": [], "test_no_seed_init": [], "test_non_aggregative_method": [], "test_npp_not_repl": [], "test_npp_repl": [], "test_parallel_replic": [], "test_path": 5, "test_prediction_replic": [], "test_prevalences_path": [], "test_probabilist": [], "test_protocol": [], "test_quanet_method": [], "test_replic": [], "test_samping_replic": [], "test_split": 5, "test_str_label_nam": [], "testcas": [], "testprotocol": [], "text": [3, 4, 5, 6], "text2tfidf": [1, 3, 5], "textclassifiernet": [1, 3, 4], "textual": 5, "tf": 5, "tfidf": 5, "tfidfvector": 5, "th": 6, "than": [3, 4, 5, 6], "thei": 6, "them": [5, 6], "therefor": 3, "thi": [1, 3, 4, 5, 6], "thorsten": 4, "those": [3, 4, 6], "though": 3, "threshold": [3, 6], "thresholdoptim": [1, 3, 6], "through": 3, "thu": [3, 4, 6], "time": [3, 5, 6], "timeout": [1, 2, 3], "timeouterror": 3, "timer": 3, "titl": 3, "tmp": 4, "tn": 3, "togeth": 5, "token": [4, 5], "tol": 6, "toler": 6, "toleranz": 3, "top": [3, 6], "topso": [3, 6], "topsoedist": [1, 2, 3], "torch": [4, 6], "torchdataset": [1, 3, 4], "total": [1, 2, 3], "toward": [5, 6], "tp": 3, "tpr": [3, 6], "tr": 5, "tr_iter_per_poch": 6, "tr_prev": [3, 6], "track": 3, "trade": [4, 6], "train": [3, 4, 5, 6], "train_path": 5, "train_prev": 3, "train_prop": 5, "train_siz": 5, "train_test": [1, 3, 5], "trainer": 4, "transform": [1, 3, 4, 5, 6], "tri": 6, "trial": 6, "true": [3, 4, 5, 6], "true_prev": 3, "truncatedsvd": 4, "truth": 6, "tscalibr": [1, 3, 4], "ttest_alpha": 3, "tupl": [3, 5, 6], "tweet": 5, "twitter": 5, "twitter_sentiment_datasets_test": 5, "twitter_sentiment_datasets_train": 5, "two": [3, 5, 6], "txt": 3, "type": [3, 5, 6], "typic": [3, 4, 5, 6], "u": 6, "u1": 5, "uci": 5, "uci_dataset": 5, "uci_multiclass_dataset": 5, "ucimlrepo": 5, "unalt": 4, "underli": 6, "underlin": 3, "understand": 3, "undertaken": 3, "unifi": 6, "uniform": [3, 5, 6], "uniform_prevalence_sampl": [1, 2, 3], "uniform_sampl": [1, 3, 5], "uniform_sampling_index": [1, 3, 5], "uniform_simplex_sampl": [1, 2, 3], "uniformli": 3, "uniformprevalenceprotocol": [1, 2, 3], "union": 5, "uniqu": 5, "unit": [3, 6], "unk": 5, "unknown": 5, "unlabel": 6, "unlik": 3, "until": 6, "unus": [3, 4], "up": [3, 4, 6], "updat": 6, "upp": [1, 2, 3], "url": 3, "us": [3, 4, 5, 6], "user": 3, "utf": 5, "util": [1, 2, 4, 5], "v": [3, 4, 6], "va_iter_per_poch": 6, "val": [4, 5], "val_gen": 5, "val_split": [1, 3, 4, 6], "val_split_": [1, 3, 6], "valid": [3, 4, 5, 6], "valid_loss": [1, 3, 4, 6], "valid_polici": [1, 3, 6], "valu": [3, 4, 5, 6], "valueerror": 3, "variabl": [3, 5], "variant": [3, 6], "vector": [3, 4, 5, 6], "verbos": [3, 4, 5, 6], "veri": 3, "version": [3, 4], "vertic": 3, "vertical_xtick": 3, "via": [3, 4, 6], "vline": 3, "vocab_s": 4, "vocabulari": [4, 5], "vocabulary_s": [1, 3, 4, 5, 6], "vscalibr": [1, 3, 4], "w": 5, "wa": [3, 5, 6], "wai": 6, "wait": 4, "warn": [1, 3, 5, 6], "wb": 5, "we": 5, "weight": [4, 5], "weight_decai": 4, "well": 6, "whcih": 5, "when": [3, 4, 5, 6], "whenev": 3, "where": [3, 4, 5, 6], "whether": [3, 4, 5, 6], "which": [3, 4, 5, 6], "while": [4, 5, 6], "whoi": 5, "whole": [3, 4], "whose": [5, 6], "widetild": 6, "within": [3, 6], "without": [3, 5], "word": [4, 5, 6], "work": [3, 5, 6], "worker": [3, 4, 5, 6], "workshop": 6, "wors": 3, "would": [5, 6], "wrap": 6, "wrap_cls_param": [], "wrapper": [3, 4, 5, 6], "x": [1, 3, 4, 5, 6], "x2": 5, "x_1": 6, "x_error": 3, "x_i": 6, "x_t": 6, "xavier": 4, "xavier_uniform": [1, 3, 4], "xp": [1, 3, 5], "xy": [1, 3, 5], "y": [1, 3, 4, 5, 6], "y_": 6, "y_error": 3, "y_i": 6, "y_j": 6, "y_pred": 3, "y_true": 3, "yeast": 5, "yield": [3, 5, 6], "z": 5, "z_": 3, "zenodo": 5, "zero": 3, "zip": 3}, "titles": ["quapy", "Welcome to QuaPy\u2019s documentation!", "quapy", "quapy package", "quapy.classification package", "quapy.data package", "quapy.method package"], "titleterms": {"": 1, "A": [], "aggreg": 6, "api": [], "base": [5, 6], "benchmark": [], "calibr": 4, "classif": 4, "content": [1, 3, 4, 5, 6], "data": 5, "dataset": 5, "document": 1, "error": 3, "evalu": 3, "framework": [], "function": 3, "github": 1, "indic": 1, "instal": 1, "meta": 6, "method": [4, 6], "model_select": 3, "modul": [3, 4, 5, 6], "neural": 4, "non_aggreg": 6, "open": [], "packag": [3, 4, 5, 6], "plot": 3, "preprocess": 5, "protocol": 3, "python": [], "quantif": [], "quapi": [0, 1, 2, 3, 4, 5, 6], "reader": 5, "sourc": [], "submodul": [3, 4, 5, 6], "subpackag": 3, "svmperf": 4, "tabl": 1, "test": [], "test_bas": [], "test_dataset": [], "test_evalu": [], "test_hierarchi": [], "test_labelcollect": [], "test_method": [], "test_modsel": [], "test_protocol": [], "test_replic": [], "typic": [], "util": 3, "welcom": 1}})
\ No newline at end of file
diff --git a/examples/ifcb_experiments.py b/examples/ifcb_experiments.py
index bf73f10..8fb39d1 100644
--- a/examples/ifcb_experiments.py
+++ b/examples/ifcb_experiments.py
@@ -1,29 +1,49 @@
+import numpy as np
+
import quapy as qp
from sklearn.linear_model import LogisticRegression
+
+from quapy.model_selection import GridSearchQ
from quapy.evaluation import evaluation_report
-def newLR():
- return LogisticRegression(n_jobs=-1)
+print('Quantifying the IFCB dataset with PACC\n')
+# model selection
+print('loading dataset for model selection...', end='')
+train, val_gen = qp.datasets.fetch_IFCB(for_model_selection=True, single_sample_train=True)
+print('[done]')
+print(f'\ttraining size={len(train)}, features={train.X.shape[1]}, classes={train.n_classes}')
+print(f'\tvalidation samples={val_gen.total()}')
-quantifiers = [
- ('CC', qp.method.aggregative.CC(newLR())),
- ('ACC', qp.method.aggregative.ACC(newLR())),
- ('PCC', qp.method.aggregative.PCC(newLR())),
- ('PACC', qp.method.aggregative.PACC(newLR())),
- ('HDy', qp.method.aggregative.DMy(newLR())),
- ('EMQ', qp.method.aggregative.EMQ(newLR()))
-]
+print('model selection starts')
+quantifier = qp.method.aggregative.PACC(LogisticRegression())
+mod_sel = GridSearchQ(
+ quantifier,
+ param_grid={
+ 'classifier__C': np.logspace(-3,3,7),
+ 'classifier__class_weight': [None, 'balanced']
+ },
+ protocol=val_gen,
+ refit=False,
+ n_jobs=-1,
+ verbose=True,
+ raise_errors=True
+).fit(train)
-for quant_name, quantifier in quantifiers:
+print(f'model selection chose hyperparameters: {mod_sel.best_params_}')
+quantifier = mod_sel.best_model_
- print("Experiment with "+quant_name)
+print('loading dataset for test...', end='')
+train, test_gen = qp.datasets.fetch_IFCB(for_model_selection=False, single_sample_train=True)
+print('[done]')
+print(f'\ttraining size={len(train)}, features={train.X.shape[1]}, classes={train.n_classes}')
+print(f'\ttest samples={test_gen.total()}')
- train, test_gen = qp.datasets.fetch_IFCB()
+print('training on the whole dataset before test')
+quantifier.fit(train)
- quantifier.fit(train)
-
- report = evaluation_report(quantifier, protocol=test_gen, error_metrics=['mae'], verbose=True)
- print(report.mean())
+print('testing...')
+report = evaluation_report(quantifier, protocol=test_gen, error_metrics=['mae'], verbose=True)
+print(report.mean())
diff --git a/quapy/data/_ifcb.py b/quapy/data/_ifcb.py
index 79e7eb3..96af189 100644
--- a/quapy/data/_ifcb.py
+++ b/quapy/data/_ifcb.py
@@ -4,6 +4,7 @@ import math
from quapy.protocol import AbstractProtocol
from pathlib import Path
+
def get_sample_list(path_dir):
"""Gets a sample list finding the csv files in a directory
@@ -19,6 +20,7 @@ def get_sample_list(path_dir):
samples.append(filename)
return samples
+
def generate_modelselection_split(samples, split=0.3):
"""This function generates a train/test split for model selection
without the use of random numbers so the split is always the same
@@ -37,6 +39,7 @@ def generate_modelselection_split(samples, split=0.3):
train = [item for i, item in enumerate(samples) if i not in test_indices]
return train, test
+
class IFCBTrainSamplesFromDir(AbstractProtocol):
def __init__(self, path_dir:str, classes: list, samples: list = None):
@@ -64,6 +67,7 @@ class IFCBTrainSamplesFromDir(AbstractProtocol):
"""
return len(self.samples)
+
class IFCBTestSamples(AbstractProtocol):
def __init__(self, path_dir:str, test_prevalences: pd.DataFrame, samples: list = None, classes: list=None):
diff --git a/quapy/data/datasets.py b/quapy/data/datasets.py
index 6e05f55..3d426f2 100644
--- a/quapy/data/datasets.py
+++ b/quapy/data/datasets.py
@@ -734,13 +734,14 @@ def fetch_lequa2022(task, data_home=None):
return train, val_gen, test_gen
+
def fetch_IFCB(single_sample_train=True, for_model_selection=False, data_home=None):
"""
- Loads the IFCB dataset for quantification `. For more
- information on this dataset check the zenodo site.
- This dataset is based on the data available publicly at .
- The scripts for the processing are available at
-
+ Loads the IFCB dataset for quantification from `Zenodo `_ (for more
+ information on this dataset, please follow the zenodo link).
+ This dataset is based on the data available publicly at
+ `WHOI-Plankton repo `_.
+ The scripts for the processing are available at `P. González's repo `_.
Basically, this is the IFCB dataset with precomputed features for testing quantification algorithms.
The datasets are downloaded only once, and stored for fast reuse.
diff --git a/quapy/method/aggregative.py b/quapy/method/aggregative.py
index a831bcb..f49bd3e 100644
--- a/quapy/method/aggregative.py
+++ b/quapy/method/aggregative.py
@@ -60,6 +60,19 @@ class AggregativeQuantifier(BaseQuantifier, ABC):
"""
pass
+ def _check_non_empty_classes(self, data: LabelledCollection):
+ """
+ Asserts all classes have positive instances.
+
+ :param data: LabelledCollection
+ :return: Nothing. May raise an exception.
+ """
+ sample_prevs = data.prevalence()
+ empty_classes = np.argwhere(sample_prevs==0).flatten()
+ if len(empty_classes)>0:
+ empty_class_names = data.classes_[empty_classes]
+ raise ValueError(f'classes {empty_class_names} have no training examples')
+
def fit(self, data: LabelledCollection, fit_classifier=True, val_split=None):
"""
Trains the aggregative quantifier. This comes down to training a classifier and an aggregation function.
@@ -93,6 +106,9 @@ class AggregativeQuantifier(BaseQuantifier, ABC):
self._check_classifier(adapt_if_necessary=(self._classifier_method() == 'predict_proba'))
+ if fit_classifier:
+ self._check_non_empty_classes(data)
+
if predict_on is None:
predict_on = self.val_split
@@ -100,7 +116,6 @@ class AggregativeQuantifier(BaseQuantifier, ABC):
if fit_classifier:
self.classifier.fit(*data.Xy)
predictions = None
-
elif isinstance(predict_on, float):
if fit_classifier:
if not (0. < predict_on < 1.):