diff --git a/docs/build/html/quapy.data.html b/docs/build/html/quapy.data.html index 4ade0f9..fd7a730 100644 --- a/docs/build/html/quapy.data.html +++ b/docs/build/html/quapy.data.html @@ -51,7 +51,6 @@
  • quapy.classification package
  • quapy.data package
  • quapy.method package
  • -
  • quapy.tests package
  • Submodules
  • @@ -627,30 +626,31 @@ otherwise.

    quapy.data.datasets module

    -quapy.data.datasets.fetch_IFCB(single_sample_train=True, data_home=None)[source]
    -

    Loads the IFCB dataset for quantification <https://zenodo.org/records/10036244>`. For more -information on this dataset check the zenodo site. -This dataset is based on the data available publicly at <https://github.com/hsosik/WHOI-Plankton>. -The scripts for the processing are available at <https://github.com/pglez82/IFCB_Zenodo>

    -

    Basically, this is the IFCB dataset with precomputed features for testing quantification algorithms.

    +quapy.data.datasets.fetch_IFCB(single_sample_train=True, for_model_selection=False, data_home=None)[source] +

    Loads the IFCB dataset for quantification from Zenodo (for more +information on this dataset, please follow the zenodo link). +This dataset is based on the data available publicly at +WHOI-Plankton repo. +The scripts for the processing are available at P. González’s repo. +Basically, this is the IFCB dataset with precomputed features for testing quantification algorithms.

    The datasets are downloaded only once, and stored for fast reuse.

    Parameters:
      -
    • single_sample_train – boolean. If True (default), it returns the train dataset as an instance of +

    • single_sample_train – a boolean. If true, it will return the train dataset as a quapy.data.base.LabelledCollection (all examples together). -If False, a generator of training samples will be returned. -Each example in the training set has an individual class label.

    • +If false, a generator of training samples will be returned. Each example in the training set has an individual label.

      +
    • for_model_selection – if True, then returns a split 30% of the training set (86 out of 286 samples) to be used for model selection; +if False, then returns the full training set as training set and the test set as the test set

    • data_home – specify the quapy home directory where collections will be dumped (leave empty to use the default ~/quay_data/ directory)

    Returns:

    a tuple (train, test_gen) where train is an instance of -quapy.data.base.LabelledCollection, if single_sample_train is True or -quapy.data._ifcb.IFCBTrainSamplesFromDir otherwise, i.e. a sampling protocol that -returns a series of samples labelled example by example. -test_gen is an instance of quapy.data._ifcb.IFCBTestSamples, +quapy.data.base.LabelledCollection, if single_sample_train is true or +quapy.data._ifcb.IFCBTrainSamplesFromDir, i.e. a sampling protocol that returns a series of samples +labelled example by example. test_gen will be a quapy.data._ifcb.IFCBTestSamples, i.e., a sampling protocol that returns a series of samples labelled by prevalence.

    diff --git a/docs/build/html/quapy.method.html b/docs/build/html/quapy.method.html index 4600719..e843d2a 100644 --- a/docs/build/html/quapy.method.html +++ b/docs/build/html/quapy.method.html @@ -22,7 +22,6 @@ - @@ -52,7 +51,6 @@
  • quapy.classification package
  • quapy.data package
  • quapy.method package
  • -
  • quapy.tests package
  • Submodules
  • @@ -2820,7 +2818,6 @@ any quantification method should beat.