forked from moreo/QuaPy
Update README.md
This commit is contained in:
parent
a091b2af82
commit
a8ef7a6ed3
16
README.md
16
README.md
|
@ -21,7 +21,7 @@ pip install quapy
|
||||||
|
|
||||||
The following script fetchs a Twitter dataset, trains and evaluates an
|
The following script fetchs a Twitter dataset, trains and evaluates an
|
||||||
_Adjusted Classify & Count_ model in terms of the _Mean Absolute Error_ (MAE)
|
_Adjusted Classify & Count_ model in terms of the _Mean Absolute Error_ (MAE)
|
||||||
between the class prevalences estimated for the test set and the true prevalences
|
between the class prevalence values estimated for the test set and the true prevalence values
|
||||||
of the test set.
|
of the test set.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
@ -34,20 +34,20 @@ dataset = qp.datasets.fetch_twitter('semeval16')
|
||||||
model = qp.method.aggregative.ACC(LogisticRegression())
|
model = qp.method.aggregative.ACC(LogisticRegression())
|
||||||
model.fit(dataset.training)
|
model.fit(dataset.training)
|
||||||
|
|
||||||
estim_prevalences = model.quantify(dataset.test.instances)
|
estim_prevalence = model.quantify(dataset.test.instances)
|
||||||
true_prevalences = dataset.test.prevalence()
|
true_prevalence = dataset.test.prevalence()
|
||||||
|
|
||||||
error = qp.error.mae(true_prevalences, estim_prevalences)
|
error = qp.error.mae(true_prevalence, estim_prevalence)
|
||||||
|
|
||||||
print(f'Mean Absolute Error (MAE)={error:.3f}')
|
print(f'Mean Absolute Error (MAE)={error:.3f}')
|
||||||
```
|
```
|
||||||
|
|
||||||
Quantification is useful in scenarios of prior probability shift. In other
|
Quantification is useful in scenarios of prior probability shift. In other
|
||||||
words, we would not be interested in estimating the class prevalences of the test set if
|
words, we would not be interested in estimating the class prevalence values of the test set if
|
||||||
we could assume the IID assumption to hold, as this prevalence would simply coincide with the
|
we could assume the IID assumption to hold, as this prevalence would simply coincide with the
|
||||||
class prevalence of the training set. For this reason, any Quantification model
|
class prevalence of the training set. For this reason, any Quantification model
|
||||||
should be tested across samples characterized by different class prevalences.
|
should be tested across samples characterized by different class prevalence values.
|
||||||
QuaPy implements sampling procedures and evaluation protocols that automates this endeavour.
|
QuaPy implements sampling procedures and evaluation protocols that automate this endeavour.
|
||||||
See the [Wiki](https://github.com/HLT-ISTI/QuaPy/wiki) for detailed examples.
|
See the [Wiki](https://github.com/HLT-ISTI/QuaPy/wiki) for detailed examples.
|
||||||
|
|
||||||
## Features
|
## Features
|
||||||
|
@ -108,4 +108,4 @@ are provided:
|
||||||
* [Evaluation](https://github.com/HLT-ISTI/QuaPy/wiki/Evaluation)
|
* [Evaluation](https://github.com/HLT-ISTI/QuaPy/wiki/Evaluation)
|
||||||
* [Methods](https://github.com/HLT-ISTI/QuaPy/wiki/Methods)
|
* [Methods](https://github.com/HLT-ISTI/QuaPy/wiki/Methods)
|
||||||
* [Model Selection](https://github.com/HLT-ISTI/QuaPy/wiki/Model-Selection)
|
* [Model Selection](https://github.com/HLT-ISTI/QuaPy/wiki/Model-Selection)
|
||||||
* [Plotting](https://github.com/HLT-ISTI/QuaPy/wiki/Plotting)
|
* [Plotting](https://github.com/HLT-ISTI/QuaPy/wiki/Plotting)
|
||||||
|
|
Loading…
Reference in New Issue