forked from moreo/QuaPy
recalibration
This commit is contained in:
parent
3c48841480
commit
adf799c8ec
|
@ -0,0 +1,59 @@
|
|||
import numpy as np
|
||||
from abstention.calibration import NoBiasVectorScaling, VectorScaling, TempScaling
|
||||
from sklearn.calibration import CalibratedClassifierCV
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
import quapy as qp
|
||||
import quapy.functional as F
|
||||
from classification.calibration import RecalibratedClassifierBase, NBVSCalibration, \
|
||||
BCTSCalibration
|
||||
from data.datasets import LEQUA2022_SAMPLE_SIZE, fetch_lequa2022
|
||||
from evaluation import evaluation_report
|
||||
from method.aggregative import EMQ
|
||||
from model_selection import GridSearchQ
|
||||
import pandas as pd
|
||||
|
||||
for task in ['T1A', 'T1B']:
|
||||
for calib in ['NoCal', 'TS', 'VS', 'NBVS', 'NBTS']:
|
||||
|
||||
# calibration = TempScaling(verbose=False, bias_positions='all')
|
||||
|
||||
qp.environ['SAMPLE_SIZE'] = LEQUA2022_SAMPLE_SIZE[task]
|
||||
training, val_generator, test_generator = fetch_lequa2022(task=task)
|
||||
|
||||
# define the quantifier
|
||||
# learner = BCTSCalibration(LogisticRegression(), n_jobs=-1)
|
||||
# learner = CalibratedClassifierCV(LogisticRegression())
|
||||
learner = LogisticRegression()
|
||||
quantifier = EMQ(learner=learner, exact_train_prev=False, recalib=calib.lower() if calib != 'NoCal' else None)
|
||||
|
||||
# model selection
|
||||
param_grid = {'C': np.logspace(-3, 3, 7), 'class_weight': ['balanced', None]}
|
||||
model_selection = GridSearchQ(quantifier, param_grid, protocol=val_generator, error='mrae', n_jobs=-1, refit=False, verbose=True)
|
||||
quantifier = model_selection.fit(training)
|
||||
|
||||
# evaluation
|
||||
report = evaluation_report(quantifier, protocol=test_generator, error_metrics=['mae', 'mrae', 'mkld'], verbose=True)
|
||||
|
||||
import os
|
||||
os.makedirs(f'./predictions/{task}', exist_ok=True)
|
||||
with open(f'./predictions/{task}/{calib}-EMQ.csv', 'wt') as foo:
|
||||
estim_prev = report['estim-prev'].values
|
||||
nclasses = len(estim_prev[0])
|
||||
foo.write(f'id,'+','.join([str(x) for x in range(nclasses)])+'\n')
|
||||
for id, prev in enumerate(estim_prev):
|
||||
foo.write(f'{id},'+','.join([f'{p:.5f}' for p in prev])+'\n')
|
||||
|
||||
os.makedirs(f'./errors/{task}', exist_ok=True)
|
||||
with open(f'./errors/{task}/{calib}-EMQ.csv', 'wt') as foo:
|
||||
maes, mraes = report['mae'].values, report['mrae'].values
|
||||
foo.write(f'id,AE,RAE\n')
|
||||
for id, (ae_i, rae_i) in enumerate(zip(maes, mraes)):
|
||||
foo.write(f'{id},{ae_i:.5f},{rae_i:.5f}\n')
|
||||
|
||||
# printing results
|
||||
pd.set_option('display.expand_frame_repr', False)
|
||||
report['estim-prev'] = report['estim-prev'].map(F.strprev)
|
||||
print(report)
|
||||
|
||||
print('Averaged values:')
|
||||
print(report.mean())
|
Loading…
Reference in New Issue