From b78c8268fd7d8b9d1446a8e4616bdc5476ee2fb5 Mon Sep 17 00:00:00 2001
From: Alex Moreo
Date: Fri, 12 Nov 2021 15:37:31 +0100
Subject: [PATCH] update qp.error documentation
---
docs/build/html/quapy.classification.html | 15 +-
docs/build/html/quapy.html | 363 ++++++++++++++++++++--
docs/build/html/searchindex.js | 2 +-
quapy/error.py | 141 ++++++++-
4 files changed, 484 insertions(+), 37 deletions(-)
diff --git a/docs/build/html/quapy.classification.html b/docs/build/html/quapy.classification.html
index 34fe110..107ac2d 100644
--- a/docs/build/html/quapy.classification.html
+++ b/docs/build/html/quapy.classification.html
@@ -67,7 +67,7 @@ that also generates embedded inputs (i.e., that implements transformquapy.method.neural.QuaNet. This is a mock method to allow for easily instantiating
quapy.method.neural.QuaNet
on array-like real-valued instances.
The transformation consists of applying sklearn.decomposition.TruncatedSVD
-while classification is performed using sklearn.linear_model.LogisticRegression
on the low-rank space
+while classification is performed using sklearn.linear_model.LogisticRegression
on the low-rank space.
- Parameters
@@ -81,7 +81,7 @@ while classification is performed using
fit(X, y)
Fit the model according to the given training data. The fit consists of
-fitting TruncatedSVD and Logistic Regression.
+fitting TruncatedSVD and then LogisticRegression on the low-rank representation.
- Parameters
-
quapy.error.kld(p, p_hat, eps=None)
-
+
+- Computes the Kullback-Leibler divergence between the two prevalence distributions.
Kullback-Leibler divergence between two prevalence distributions \(p\) and \(\hat{p}\) is computed as
+\(KLD(p,\hat{p})=D_{KL}(p||\hat{p})=\sum_{y\in \mathcal{Y}} p(y)\log\frac{p(y)}{\hat{p}(y)}\), where
+\(\mathcal{Y}\) are the classes of interest.
+The distributions are smoothed using the eps factor (see quapy.error.smooth()
).
+
+
+
+- Parameters
+
+prevs – array-like of shape (n_classes,) with the true prevalence values
+prevs_hat – array-like of shape (n_classes,) with the predicted prevalence values
+eps – smoothing factor. KLD is not defined in cases in which the distributions contain zeros; eps
+is typically set to be \(\frac{1}{2T}\), with \(T\) the sample size. If eps=None, the sample size
+will be taken from the environment variable SAMPLE_SIZE (which has thus to be set beforehand).
+
+
+- Returns
+Kullback-Leibler divergence between the two distributions
+
+
+
-
quapy.error.mae(prevs, prevs_hat)
-
+Computes the mean absolute error (see quapy.error.ae()
) across the sample pairs.
+
+- Parameters
+
+prevs – array-like of shape (n_samples, n_classes,) with the true prevalence values
+prevs_hat – array-like of shape (n_samples, n_classes,) with the predicted prevalence values
+
+
+- Returns
+mean absolute error
+
+
+
-
quapy.error.mean_absolute_error(prevs, prevs_hat)
-
+Computes the mean absolute error (see quapy.error.ae()
) across the sample pairs.
+
+- Parameters
+
+prevs – array-like of shape (n_samples, n_classes,) with the true prevalence values
+prevs_hat – array-like of shape (n_samples, n_classes,) with the predicted prevalence values
+
+
+- Returns
+mean absolute error
+
+
+
-
quapy.error.mean_relative_absolute_error(p, p_hat, eps=None)
-
+Computes the mean relative absolute error (see quapy.error.rae()
) across the sample pairs.
+The distributions are smoothed using the eps factor (see quapy.error.smooth()
).
+
+- Parameters
+
+prevs – array-like of shape (n_samples, n_classes,) with the true prevalence values
+prevs_hat – array-like of shape (n_samples, n_classes,) with the predicted prevalence values
+eps – smoothing factor. mrae is not defined in cases in which the true distribution contains zeros; eps
+is typically set to be \(\frac{1}{2T}\), with \(T\) the sample size. If eps=None, the sample size
+will be taken from the environment variable SAMPLE_SIZE (which has thus to be set beforehand).
+
+
+- Returns
+mean relative absolute error
+
+
+
-
quapy.error.mkld(prevs, prevs_hat, eps=None)
-
+Computes the mean Kullback-Leibler divergence (see quapy.error.kld()
) across the sample pairs.
+The distributions are smoothed using the eps factor (see quapy.error.smooth()
).
+
+- Parameters
+
+prevs – array-like of shape (n_samples, n_classes,) with the true prevalence values
+prevs_hat – array-like of shape (n_samples, n_classes,) with the predicted prevalence values
+eps – smoothing factor. KLD is not defined in cases in which the distributions contain zeros; eps
+is typically set to be \(\frac{1}{2T}\), with \(T\) the sample size. If eps=None, the sample size
+will be taken from the environment variable SAMPLE_SIZE (which has thus to be set beforehand).
+
+
+- Returns
+mean Kullback-Leibler distribution
+
+
+
-
quapy.error.mnkld(prevs, prevs_hat, eps=None)
-
+Computes the mean Normalized Kullback-Leibler divergence (see quapy.error.nkld()
) across the sample pairs.
+The distributions are smoothed using the eps factor (see quapy.error.smooth()
).
+
+- Parameters
+
+prevs – array-like of shape (n_samples, n_classes,) with the true prevalence values
+prevs_hat – array-like of shape (n_samples, n_classes,) with the predicted prevalence values
+eps – smoothing factor. NKLD is not defined in cases in which the distributions contain zeros; eps
+is typically set to be \(\frac{1}{2T}\), with \(T\) the sample size. If eps=None, the sample size
+will be taken from the environment variable SAMPLE_SIZE (which has thus to be set beforehand).
+
+
+- Returns
+mean Normalized Kullback-Leibler distribution
+
+
+
-
quapy.error.mrae(p, p_hat, eps=None)
-
+Computes the mean relative absolute error (see quapy.error.rae()
) across the sample pairs.
+The distributions are smoothed using the eps factor (see quapy.error.smooth()
).
+
+- Parameters
+
+prevs – array-like of shape (n_samples, n_classes,) with the true prevalence values
+prevs_hat – array-like of shape (n_samples, n_classes,) with the predicted prevalence values
+eps – smoothing factor. mrae is not defined in cases in which the true distribution contains zeros; eps
+is typically set to be \(\frac{1}{2T}\), with \(T\) the sample size. If eps=None, the sample size
+will be taken from the environment variable SAMPLE_SIZE (which has thus to be set beforehand).
+
+
+- Returns
+mean relative absolute error
+
+
+
-
quapy.error.mse(prevs, prevs_hat)
-
+Computes the mean squared error (see quapy.error.se()
) across the sample pairs.
+
+- Parameters
+
+prevs – array-like of shape (n_samples, n_classes,) with the true prevalence values
+prevs_hat – array-like of shape (n_samples, n_classes,) with the predicted prevalence values
+
+
+- Returns
+mean squared error
+
+
+
-
quapy.error.nkld(p, p_hat, eps=None)
-
+
+- Computes the Normalized Kullback-Leibler divergence between the two prevalence distributions.
Normalized Kullback-Leibler divergence between two prevalence distributions \(p\) and \(\hat{p}\)
+is computed as \(NKLD(p,\hat{p}) = 2\frac{e^{KLD(p,\hat{p})}}{e^{KLD(p,\hat{p})}+1}-1\), where
+\(\mathcal{Y}\) are the classes of interest.
+The distributions are smoothed using the eps factor (see quapy.error.smooth()
).
+
+
+
+- Parameters
+
+prevs – array-like of shape (n_classes,) with the true prevalence values
+prevs_hat – array-like of shape (n_classes,) with the predicted prevalence values
+eps – smoothing factor. NKLD is not defined in cases in which the distributions contain zeros; eps
+is typically set to be \(\frac{1}{2T}\), with \(T\) the sample size. If eps=None, the sample size
+will be taken from the environment variable SAMPLE_SIZE (which has thus to be set beforehand).
+
+
+- Returns
+Normalized Kullback-Leibler divergence between the two distributions
+
+
+
-
quapy.error.rae(p, p_hat, eps=None)
-
+
+- Computes the absolute relative error between the two prevalence vectors.
Relative absolute error between two prevalence vectors \(p\) and \(\hat{p}\) is computed as
+\(RAE(p,\hat{p})=\frac{1}{|\mathcal{Y}|}\sum_{y\in \mathcal{Y}}\frac{|\hat{p}(y)-p(y)|}{p(y)}\),
+where \(\mathcal{Y}\) are the classes of interest.
+The distributions are smoothed using the eps factor (see quapy.error.smooth()
).
+
+
+
+- Parameters
+
+prevs – array-like of shape (n_classes,) with the true prevalence values
+prevs_hat – array-like of shape (n_classes,) with the predicted prevalence values
+eps – smoothing factor. rae is not defined in cases in which the true distribution contains zeros; eps
+is typically set to be \(\frac{1}{2T}\), with \(T\) the sample size. If eps=None, the sample size
+will be taken from the environment variable SAMPLE_SIZE (which has thus to be set beforehand).
+
+
+- Returns
+relative absolute error
+
+
+
-
quapy.error.relative_absolute_error(p, p_hat, eps=None)
-
+
+- Computes the absolute relative error between the two prevalence vectors.
Relative absolute error between two prevalence vectors \(p\) and \(\hat{p}\) is computed as
+\(RAE(p,\hat{p})=\frac{1}{|\mathcal{Y}|}\sum_{y\in \mathcal{Y}}\frac{|\hat{p}(y)-p(y)|}{p(y)}\),
+where \(\mathcal{Y}\) are the classes of interest.
+The distributions are smoothed using the eps factor (see quapy.error.smooth()
).
+
+
+
+- Parameters
+
+prevs – array-like of shape (n_classes,) with the true prevalence values
+prevs_hat – array-like of shape (n_classes,) with the predicted prevalence values
+eps – smoothing factor. rae is not defined in cases in which the true distribution contains zeros; eps
+is typically set to be \(\frac{1}{2T}\), with \(T\) the sample size. If eps=None, the sample size
+will be taken from the environment variable SAMPLE_SIZE (which has thus to be set beforehand).
+
+
+- Returns
+relative absolute error
+
+
+
-
quapy.error.se(p, p_hat)
-
+
+- Computes the squared error between the two prevalence vectors.
Squared error between two prevalence vectors \(p\) and \(\hat{p}\) is computed as
+\(SE(p,\hat{p})=\frac{1}{|\mathcal{Y}|}\sum_{y\in \mathcal{Y}}(\hat{p}(y)-p(y))^2\), where
+\(\mathcal{Y}\) are the classes of interest.
+
+
+
+- Parameters
+
+prevs – array-like of shape (n_classes,) with the true prevalence values
+prevs_hat – array-like of shape (n_classes,) with the predicted prevalence values
+
+
+- Returns
+absolute error
+
+
+
-
-quapy.error.smooth(p, eps)
-
+quapy.error.smooth(prevs, eps)
+Smooths a prevalence distribution with \(\epsilon\) (eps) as:
+\(\underline{p}(y)=\frac{\epsilon+p(y)}{\epsilon|\mathcal{Y}|+\displaystyle\sum_{y\in \mathcal{Y}}p(y)}\)
+
+- Parameters
+-
+
+- Returns
+array-like of shape (n_classes,) with the smoothed distribution
+
+
+
diff --git a/docs/build/html/searchindex.js b/docs/build/html/searchindex.js
index b8a80a1..0795a61 100644
--- a/docs/build/html/searchindex.js
+++ b/docs/build/html/searchindex.js
@@ -1 +1 @@
-Search.setIndex({docnames:["Datasets","Evaluation","Installation","Methods","Model-Selection","Plotting","index","modules","quapy","quapy.classification","quapy.data","quapy.method"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":4,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,sphinx:56},filenames:["Datasets.md","Evaluation.md","Installation.rst","Methods.md","Model-Selection.md","Plotting.md","index.rst","modules.rst","quapy.rst","quapy.classification.rst","quapy.data.rst","quapy.method.rst"],objects:{"":{quapy:[8,0,0,"-"]},"quapy.classification":{methods:[9,0,0,"-"],neural:[9,0,0,"-"],svmperf:[9,0,0,"-"]},"quapy.classification.methods":{LowRankLogisticRegression:[9,1,1,""]},"quapy.classification.methods.LowRankLogisticRegression":{fit:[9,2,1,""],get_params:[9,2,1,""],predict:[9,2,1,""],predict_proba:[9,2,1,""],set_params:[9,2,1,""],transform:[9,2,1,""]},"quapy.classification.neural":{CNNnet:[9,1,1,""],LSTMnet:[9,1,1,""],NeuralClassifierTrainer:[9,1,1,""],TextClassifierNet:[9,1,1,""],TorchDataset:[9,1,1,""]},"quapy.classification.neural.CNNnet":{document_embedding:[9,2,1,""],get_params:[9,2,1,""],vocabulary_size:[9,3,1,""]},"quapy.classification.neural.LSTMnet":{document_embedding:[9,2,1,""],get_params:[9,2,1,""],vocabulary_size:[9,3,1,""]},"quapy.classification.neural.NeuralClassifierTrainer":{device:[9,3,1,""],fit:[9,2,1,""],get_params:[9,2,1,""],predict:[9,2,1,""],predict_proba:[9,2,1,""],reset_net_params:[9,2,1,""],set_params:[9,2,1,""],transform:[9,2,1,""]},"quapy.classification.neural.TextClassifierNet":{dimensions:[9,2,1,""],document_embedding:[9,2,1,""],forward:[9,2,1,""],get_params:[9,2,1,""],predict_proba:[9,2,1,""],vocabulary_size:[9,3,1,""],xavier_uniform:[9,2,1,""]},"quapy.classification.neural.TorchDataset":{asDataloader:[9,2,1,""]},"quapy.classification.svmperf":{SVMperf:[9,1,1,""]},"quapy.classification.svmperf.SVMperf":{decision_function:[9,2,1,""],fit:[9,2,1,""],predict:[9,2,1,""],set_params:[9,2,1,""],valid_losses:[9,4,1,""]},"quapy.data":{base:[10,0,0,"-"],datasets:[10,0,0,"-"],preprocessing:[10,0,0,"-"],reader:[10,0,0,"-"]},"quapy.data.base":{Dataset:[10,1,1,""],LabelledCollection:[10,1,1,""],isbinary:[10,5,1,""]},"quapy.data.base.Dataset":{SplitStratified:[10,2,1,""],binary:[10,3,1,""],classes_:[10,3,1,""],kFCV:[10,2,1,""],load:[10,2,1,""],n_classes:[10,3,1,""],stats:[10,2,1,""],vocabulary_size:[10,3,1,""]},"quapy.data.base.LabelledCollection":{Xy:[10,3,1,""],artificial_sampling_generator:[10,2,1,""],artificial_sampling_index_generator:[10,2,1,""],binary:[10,3,1,""],counts:[10,2,1,""],kFCV:[10,2,1,""],load:[10,2,1,""],n_classes:[10,3,1,""],natural_sampling_generator:[10,2,1,""],natural_sampling_index_generator:[10,2,1,""],prevalence:[10,2,1,""],sampling:[10,2,1,""],sampling_from_index:[10,2,1,""],sampling_index:[10,2,1,""],split_stratified:[10,2,1,""],stats:[10,2,1,""],uniform_sampling:[10,2,1,""],uniform_sampling_index:[10,2,1,""]},"quapy.data.datasets":{df_replace:[10,5,1,""],fetch_UCIDataset:[10,5,1,""],fetch_UCILabelledCollection:[10,5,1,""],fetch_reviews:[10,5,1,""],fetch_twitter:[10,5,1,""],warn:[10,5,1,""]},"quapy.data.preprocessing":{IndexTransformer:[10,1,1,""],index:[10,5,1,""],reduce_columns:[10,5,1,""],standardize:[10,5,1,""],text2tfidf:[10,5,1,""]},"quapy.data.preprocessing.IndexTransformer":{add_word:[10,2,1,""],fit:[10,2,1,""],fit_transform:[10,2,1,""],index:[10,2,1,""],transform:[10,2,1,""],vocabulary_size:[10,2,1,""]},"quapy.data.reader":{binarize:[10,5,1,""],from_csv:[10,5,1,""],from_sparse:[10,5,1,""],from_text:[10,5,1,""],reindex_labels:[10,5,1,""]},"quapy.error":{absolute_error:[8,5,1,""],acc_error:[8,5,1,""],acce:[8,5,1,""],ae:[8,5,1,""],f1_error:[8,5,1,""],f1e:[8,5,1,""],from_name:[8,5,1,""],kld:[8,5,1,""],mae:[8,5,1,""],mean_absolute_error:[8,5,1,""],mean_relative_absolute_error:[8,5,1,""],mkld:[8,5,1,""],mnkld:[8,5,1,""],mrae:[8,5,1,""],mse:[8,5,1,""],nkld:[8,5,1,""],rae:[8,5,1,""],relative_absolute_error:[8,5,1,""],se:[8,5,1,""],smooth:[8,5,1,""]},"quapy.evaluation":{artificial_prevalence_prediction:[8,5,1,""],artificial_prevalence_protocol:[8,5,1,""],artificial_prevalence_report:[8,5,1,""],evaluate:[8,5,1,""],gen_prevalence_prediction:[8,5,1,""],natural_prevalence_prediction:[8,5,1,""],natural_prevalence_protocol:[8,5,1,""],natural_prevalence_report:[8,5,1,""]},"quapy.functional":{HellingerDistance:[8,5,1,""],adjusted_quantification:[8,5,1,""],artificial_prevalence_sampling:[8,5,1,""],get_nprevpoints_approximation:[8,5,1,""],normalize_prevalence:[8,5,1,""],num_prevalence_combinations:[8,5,1,""],prevalence_from_labels:[8,5,1,""],prevalence_from_probabilities:[8,5,1,""],prevalence_linspace:[8,5,1,""],strprev:[8,5,1,""],uniform_prevalence_sampling:[8,5,1,""],uniform_simplex_sampling:[8,5,1,""]},"quapy.method":{aggregative:[11,0,0,"-"],base:[11,0,0,"-"],meta:[11,0,0,"-"],neural:[11,0,0,"-"],non_aggregative:[11,0,0,"-"]},"quapy.method.aggregative":{ACC:[11,1,1,""],AdjustedClassifyAndCount:[11,4,1,""],AggregativeProbabilisticQuantifier:[11,1,1,""],AggregativeQuantifier:[11,1,1,""],CC:[11,1,1,""],ClassifyAndCount:[11,4,1,""],ELM:[11,1,1,""],EMQ:[11,1,1,""],ExpectationMaximizationQuantifier:[11,4,1,""],ExplicitLossMinimisation:[11,4,1,""],HDy:[11,1,1,""],HellingerDistanceY:[11,4,1,""],MAX:[11,1,1,""],MS2:[11,1,1,""],MS:[11,1,1,""],MedianSweep2:[11,4,1,""],MedianSweep:[11,4,1,""],OneVsAll:[11,1,1,""],PACC:[11,1,1,""],PCC:[11,1,1,""],ProbabilisticAdjustedClassifyAndCount:[11,4,1,""],ProbabilisticClassifyAndCount:[11,4,1,""],SVMAE:[11,1,1,""],SVMKLD:[11,1,1,""],SVMNKLD:[11,1,1,""],SVMQ:[11,1,1,""],SVMRAE:[11,1,1,""],T50:[11,1,1,""],ThresholdOptimization:[11,1,1,""],X:[11,1,1,""],training_helper:[11,5,1,""]},"quapy.method.aggregative.ACC":{aggregate:[11,2,1,""],classify:[11,2,1,""],fit:[11,2,1,""],solve_adjustment:[11,2,1,""]},"quapy.method.aggregative.AggregativeProbabilisticQuantifier":{posterior_probabilities:[11,2,1,""],predict_proba:[11,2,1,""],probabilistic:[11,3,1,""],quantify:[11,2,1,""],set_params:[11,2,1,""]},"quapy.method.aggregative.AggregativeQuantifier":{aggregate:[11,2,1,""],aggregative:[11,3,1,""],classes_:[11,3,1,""],classify:[11,2,1,""],fit:[11,2,1,""],get_params:[11,2,1,""],learner:[11,3,1,""],n_classes:[11,3,1,""],quantify:[11,2,1,""],set_params:[11,2,1,""]},"quapy.method.aggregative.CC":{aggregate:[11,2,1,""],fit:[11,2,1,""]},"quapy.method.aggregative.ELM":{aggregate:[11,2,1,""],classify:[11,2,1,""],fit:[11,2,1,""]},"quapy.method.aggregative.EMQ":{EM:[11,2,1,""],EPSILON:[11,4,1,""],MAX_ITER:[11,4,1,""],aggregate:[11,2,1,""],fit:[11,2,1,""],predict_proba:[11,2,1,""]},"quapy.method.aggregative.HDy":{aggregate:[11,2,1,""],fit:[11,2,1,""]},"quapy.method.aggregative.MS":{optimize_threshold:[11,2,1,""]},"quapy.method.aggregative.MS2":{optimize_threshold:[11,2,1,""]},"quapy.method.aggregative.OneVsAll":{aggregate:[11,2,1,""],binary:[11,3,1,""],classes_:[11,3,1,""],classify:[11,2,1,""],fit:[11,2,1,""],get_params:[11,2,1,""],posterior_probabilities:[11,2,1,""],probabilistic:[11,3,1,""],quantify:[11,2,1,""],set_params:[11,2,1,""]},"quapy.method.aggregative.PACC":{aggregate:[11,2,1,""],classify:[11,2,1,""],fit:[11,2,1,""]},"quapy.method.aggregative.PCC":{aggregate:[11,2,1,""],fit:[11,2,1,""]},"quapy.method.aggregative.ThresholdOptimization":{aggregate:[11,2,1,""],compute_fpr:[11,2,1,""],compute_table:[11,2,1,""],compute_tpr:[11,2,1,""],fit:[11,2,1,""],optimize_threshold:[11,2,1,""]},"quapy.method.base":{BaseQuantifier:[11,1,1,""],BinaryQuantifier:[11,1,1,""],isaggregative:[11,5,1,""],isbinary:[11,5,1,""],isprobabilistic:[11,5,1,""]},"quapy.method.base.BaseQuantifier":{aggregative:[11,3,1,""],binary:[11,3,1,""],classes_:[11,3,1,""],fit:[11,2,1,""],get_params:[11,2,1,""],probabilistic:[11,3,1,""],quantify:[11,2,1,""],set_params:[11,2,1,""]},"quapy.method.base.BinaryQuantifier":{binary:[11,3,1,""]},"quapy.method.meta":{EACC:[11,5,1,""],ECC:[11,5,1,""],EEMQ:[11,5,1,""],EHDy:[11,5,1,""],EPACC:[11,5,1,""],Ensemble:[11,1,1,""],ensembleFactory:[11,5,1,""],get_probability_distribution:[11,5,1,""]},"quapy.method.meta.Ensemble":{VALID_POLICIES:[11,4,1,""],accuracy_policy:[11,2,1,""],aggregative:[11,3,1,""],binary:[11,3,1,""],classes_:[11,3,1,""],ds_policy:[11,2,1,""],ds_policy_get_posteriors:[11,2,1,""],fit:[11,2,1,""],get_params:[11,2,1,""],probabilistic:[11,3,1,""],ptr_policy:[11,2,1,""],quantify:[11,2,1,""],set_params:[11,2,1,""],sout:[11,2,1,""]},"quapy.method.neural":{QuaNetModule:[11,1,1,""],QuaNetTrainer:[11,1,1,""],mae_loss:[11,5,1,""]},"quapy.method.neural.QuaNetModule":{device:[11,3,1,""],forward:[11,2,1,""],init_hidden:[11,2,1,""]},"quapy.method.neural.QuaNetTrainer":{classes_:[11,3,1,""],clean_checkpoint:[11,2,1,""],clean_checkpoint_dir:[11,2,1,""],epoch:[11,2,1,""],fit:[11,2,1,""],get_aggregative_estims:[11,2,1,""],get_params:[11,2,1,""],quantify:[11,2,1,""],set_params:[11,2,1,""]},"quapy.method.non_aggregative":{MaximumLikelihoodPrevalenceEstimation:[11,1,1,""]},"quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation":{classes_:[11,3,1,""],fit:[11,2,1,""],get_params:[11,2,1,""],quantify:[11,2,1,""],set_params:[11,2,1,""]},"quapy.model_selection":{GridSearchQ:[8,1,1,""]},"quapy.model_selection.GridSearchQ":{best_model:[8,2,1,""],classes_:[8,3,1,""],fit:[8,2,1,""],get_params:[8,2,1,""],quantify:[8,2,1,""],set_params:[8,2,1,""]},"quapy.plot":{binary_bias_bins:[8,5,1,""],binary_bias_global:[8,5,1,""],binary_diagonal:[8,5,1,""],error_by_drift:[8,5,1,""],save_or_show:[8,5,1,""]},"quapy.util":{EarlyStop:[8,1,1,""],create_if_not_exist:[8,5,1,""],create_parent_dir:[8,5,1,""],download_file:[8,5,1,""],download_file_if_not_exists:[8,5,1,""],get_quapy_home:[8,5,1,""],map_parallel:[8,5,1,""],parallel:[8,5,1,""],pickled_resource:[8,5,1,""],save_text_file:[8,5,1,""],temp_seed:[8,5,1,""]},quapy:{classification:[9,0,0,"-"],data:[10,0,0,"-"],error:[8,0,0,"-"],evaluation:[8,0,0,"-"],functional:[8,0,0,"-"],isbinary:[8,5,1,""],method:[11,0,0,"-"],model_selection:[8,0,0,"-"],plot:[8,0,0,"-"],util:[8,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","property","Python property"],"4":["py","attribute","Python attribute"],"5":["py","function","Python function"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:property","4":"py:attribute","5":"py:function"},terms:{"0":[0,1,3,4,5,8,9,10,11],"00":[0,1,4,8],"000":1,"0001":[4,11],"000e":1,"001":[4,9,11],"009":1,"01":[8,9,11],"017":1,"018":0,"02":1,"021":0,"02552":4,"03":1,"034":1,"035":1,"037":1,"04":1,"041":1,"042":1,"046":1,"048":1,"05":[5,8],"055":1,"063":0,"065":0,"070":1,"073":1,"075":1,"078":0,"081":0,"082":[0,1],"083":0,"086":0,"091":1,"099":0,"1":[0,1,3,4,5,8,9,10,11],"10":[0,1,4,5,8,9,11],"100":[0,1,3,4,5,9,10,11],"1000":[0,4,11],"10000":4,"100000":4,"101":[4,10],"1010":4,"1024":11,"104":0,"108":1,"109":0,"11":[0,1,6],"11338":0,"114":1,"1145":[],"12":9,"120":0,"1215742":0,"1271":0,"13":[0,9],"139":0,"14":[3,11],"142":1,"146":[3,11],"1473":0,"148":0,"1484":0,"15":[3,8,11],"150":0,"153":0,"157":0,"158":0,"159":0,"1593":0,"1594":0,"1599":0,"161":0,"163":[0,1],"164":[0,3,11],"167":0,"17":0,"1771":1,"1775":[0,3],"1778":[0,3],"178":0,"1823":0,"1839":0,"18399":0,"1853":0,"19":[3,10,11],"193":0,"199151":0,"19982":4,"1e":9,"1st":0,"2":[0,1,3,5,8,10,11],"20":[5,8,11],"200":[1,9],"2000":0,"2002":[3,11],"2011":4,"2013":[3,11],"2015":[0,2,3,9,11],"2016":[3,10,11],"2017":[0,3,11],"2018":[0,3,10],"2019":[3,11],"2020":4,"20342":4,"206":0,"207":0,"208":0,"21":[1,3,5,8,11],"210":8,"211":0,"2126":0,"2155":0,"21591":0,"218":[3,11],"2184":0,"219e":1,"22":[0,3,9,10,11],"222":0,"222046":0,"226":0,"229":1,"229399":0,"23":9,"235":1,"238":0,"2390":0,"24":[0,9],"243":0,"248563":0,"24866":4,"24987":4,"25":[0,5,8,9,11],"25000":0,"256":[0,9],"26":9,"261":0,"265":0,"266":0,"267":0,"27":[1,3,9,11],"270":0,"2700406":[],"271":0,"272":0,"274":0,"275":1,"27th":[0,3,10],"28":3,"280":0,"281":0,"282":0,"283":[0,1],"288":0,"289":0,"2971":0,"2nd":0,"2t":1,"2x5fcv":0,"3":[0,1,3,5,6,8,9,10,11],"30":[0,1,3,11],"300":[0,1,9],"305":0,"306":0,"312":0,"32":[0,6],"33":[0,5],"331":0,"333":0,"335":0,"337":0,"34":[0,3,11],"341":0,"346":1,"347":0,"350":0,"351":0,"357":1,"359":0,"361":0,"366":1,"372":0,"373":0,"376132":0,"3765":0,"3813":0,"3821":0,"383e":1,"387e":1,"392":0,"394":0,"399":0,"3f":[1,6],"3rd":0,"4":[0,1,3,4,5,8,11],"40":[0,3,4,11],"404333":0,"407":0,"41":[3,11],"412":0,"412e":1,"413":0,"414":0,"417":0,"41734":4,"42":[1,8],"421":0,"4259":0,"426e":1,"427":0,"430":0,"434":0,"435":1,"43676":4,"437":0,"44":0,"446":0,"45":[3,5,11],"452":0,"459":1,"4601":0,"461":0,"463":0,"465":0,"466":0,"470":0,"48":[3,11],"481":0,"48135":4,"486":0,"4898":0,"492":0,"496":0,"4960":1,"497":0,"5":[0,1,3,4,5,8,9,10,11],"50":[0,5,8,11],"500":[0,1,4,5,11],"5000":[1,5],"5005":4,"507":0,"508":0,"512":[9,11],"514":0,"515e":1,"530":0,"534":0,"535":0,"535e":1,"5379":4,"539":0,"541":1,"546":0,"5473":0,"54it":4,"55":5,"55it":4,"565":1,"569":0,"57":0,"573":0,"578":1,"583":0,"591":[3,11],"5f":4,"5fcv":11,"6":[0,1,3,5,8,10,11],"60":0,"600":1,"601":0,"604":[3,11],"606":0,"625":0,"627":0,"633e":1,"634":1,"64":[9,11],"640":0,"641":0,"650":0,"653":0,"654":1,"66":[1,11],"665":0,"667":0,"669":0,"67":5,"683":0,"688":0,"691":0,"694582":0,"7":[1,5,9],"70":0,"700":0,"701e":1,"711":0,"717":1,"725":1,"730":0,"735":0,"740e":1,"748":0,"75":[0,5,8],"762":0,"774":0,"778":0,"787":0,"794":0,"798":0,"8":[0,1,5,10,11],"8000":0,"830":0,"837":1,"858":1,"861":0,"87":[0,3,11],"8788":0,"889504":0,"8d2fhsgcvn0aaaaa":[],"9":[0,1,3,5,11],"90":[5,8],"901":0,"909":1,"914":1,"917":0,"919":0,"922":0,"923":0,"935":0,"936":0,"937":0,"945":1,"95":8,"9533":0,"958":0,"97":0,"979":0,"982":0,"99":8,"abstract":[3,9,11],"case":[0,1,3,4,5,8,11],"class":[0,1,3,4,5,6,8,9,10,11],"d\u00edez":[3,11],"default":[1,3,8,9,10],"do":[0,1,3,4,8,9],"final":[1,3,5],"float":[0,3,8,9,10,11],"function":[0,1,3,4,5,6,7,9,11],"g\u00e1llego":[0,3,11],"gonz\u00e1lez":[3,11],"import":[0,1,3,4,5,6],"int":[0,5,8,10,11],"long":[4,9],"new":[0,3,10,11],"p\u00e9rez":[0,3,11],"return":[0,1,3,4,5,8,9,10,11],"rodr\u0131":[3,11],"short":9,"static":[3,11],"true":[0,1,3,4,5,6,8,9,10,11],"try":4,"while":[3,5,8,9,11],A:[0,3,8,9,10,11],As:[3,4],By:[1,3,8],For:[0,1,5,6,8,11],If:[3,5,8,11],In:[0,1,2,3,4,5,6,9,11],It:[3,4,5],One:[0,1,3,11],That:[1,4],The:[0,1,2,4,5,6,8,9,10,11],Then:3,These:0,To:[5,10],_:5,__:[],__class__:5,__name__:5,_adjust:[],_ae_:[],_classify_:11,_error_name_:11,_fit_learner_:11,_kld_:[],_labelledcollection_:11,_learner_:11,_mean:[],_min_df_:10,_my:[],_nkld_:[],_posterior_probabilities_:11,_q_:[],_rae_:[],_svmperf_:[],ab:[],aboud:3,about:[0,5],abov:[0,3,5],absolut:[1,3,5,6],absolute_error:8,abstractmethod:3,acc:[1,3,5,6,8,11],acc_error:8,accept:3,access:[0,3],accommod:0,accord:[1,3,4,8,9],accordingli:5,accuraci:[1,5],accuracy_polici:11,achiev:[1,3,4,5],acm:[0,3,10,11],across:[0,1,4,5,6],action:[0,11],acut:0,ad:6,add:[3,4,8],add_word:10,addit:3,addition:[0,11],adjust:[3,6,11],adjusted_quantif:8,adjustedclassifyandcount:11,adopt:[3,4],advanc:[0,6],advantag:3,ae:[1,2,5,8],ae_:1,affect:8,afterward:11,again:5,against:5,aggreg:[1,4,5,6,7,8],aggregativeprobabilisticquantifi:[3,11],aggregativequantifi:[3,11],aggregg:11,aim:[4,5],al:[0,2,9],alaiz:[3,11],alegr:[3,11],alejandro:4,alia:[3,11],all:[0,1,2,3,5,8,11],allia:3,alloc:9,allow:[0,1,2,3,5,8,9,10,11],almost:3,along:[0,3,11],alreadi:[3,11],also:[0,1,2,3,5,6,9],altern:4,although:[3,4,5,11],alwai:[3,4,5],among:3,an:[0,1,2,3,4,5,6,8,9,11],analys:[5,6],analysi:[0,3,6,10,11],analyz:5,ani:[0,1,3,4,5,6,8,9,10,11],anoth:[0,1,3,5],anyon:0,api:6,app:8,appeal:1,appear:5,append:5,appli:[2,3,4,5,8,9,10],appropri:4,approxim:[1,5,9,11],ar:[0,1,3,4,5,8,9,10,11],archive_filenam:8,archive_path:8,arg:[8,10,11],args_i:8,argu:4,argument:[0,1,3,5],arifici:8,aris:1,around:1,arrai:[1,3,5,8,9,10],articl:[3,4,11],artifici:[0,1,3,4,5,6,8],artificial_prevalence_predict:8,artificial_prevalence_protocol:8,artificial_prevalence_report:8,artificial_prevalence_sampl:8,artificial_sampling_ev:[1,4],artificial_sampling_gener:[0,10],artificial_sampling_index_gener:10,artificial_sampling_predict:[1,5],artificial_sampling_report:1,arxiv:4,asarrai:1,asdataload:9,asonam:0,assess:4,assign:[3,8],associ:10,assum:[1,6,11],assumpt:[1,5,6],astyp:10,attempt:3,attribut:11,august:0,autom:[0,3,6],automat:[0,1],av:[3,11],avail:[0,1,2,3,5,6,9],averag:[1,3],avoid:1,axi:5,b:[0,10],balanc:[0,4],band:5,bar:8,barranquero:[2,3,9,11],base:[0,3,6,7,8,9],base_classifi:5,base_estim:3,base_quantifier_class:11,baseestim:[9,11],baselin:6,basequantifi:[3,8,11],basic:[5,11],batch:9,batch_siz:9,batch_size_test:9,been:[0,3,4,5,10,11],befor:[3,9,11],behav:[3,5],being:[4,8],belief:1,belong:3,below:[0,2,3,5,10],best:[4,8,9,11],best_model:8,best_model_:4,best_params_:4,better:4,between:[4,5,6,9],beyond:5,bia:6,bias:5,bidirect:11,bin:[5,11],bin_bia:5,bin_diag:5,binar:[8,10],binari:[3,5,6,9,10,11],binary_bias_bin:[5,8],binary_bias_glob:[5,8],binary_diagon:[5,8],binary_quantifi:11,binaryquantifi:11,block:0,bool:[8,11],both:5,bound:8,box:5,breast:0,brief:1,broken:5,budg:1,budget:[1,4],build:11,bypass:11,c:[3,4,9,10,11],calibr:3,calibratedclassifi:3,calibratedclassifiercv:3,calibratedcv:11,call:[0,1,5,8,11],callabl:[0,8,10],can:[0,1,2,3,4,5,8],cancer:0,cannot:11,cardiotocographi:0,care:11,carri:3,casa_token:[],castano:[3,11],castro:[3,11],categor:3,categori:1,cc:[3,5,11],ceil:8,center:5,chang:[0,1,3,11],character:[3,6],characteriz:[0,3,11],charg:[0,8],check:[3,4],checkpoint:[9,11],checkpointdir:11,checkpointnam:11,checkpointpath:9,choic:4,chosen:[4,8],cl:0,class2int:10,class_weight:4,classes_:[8,10,11],classif:[0,1,3,7,8,10,11],classif_posterior:[3,11],classif_predict:[3,11],classif_predictions_bin:11,classifi:[1,4,5,6,9,11],classifier_net:9,classifiermixin:9,classifyandcount:[3,11],classmethod:[0,10,11],classnam:10,clean_checkpoint:11,clean_checkpoint_dir:11,clear:5,clearer:1,clearli:5,clip:8,close:1,closer:1,cmc:0,cnn:3,cnnnet:[3,9],code:[0,3,4,5,9],coincid:[0,6],col:[0,10],collect:[0,8,9,10],collet:10,color:[5,8],colormap:8,column:[0,10],com:[],combin:[0,1,4,8],combinatio:8,combinations_budget:8,come:0,commandlin:[],common:11,commonli:6,compar:[5,11],comparison:5,compil:[2,3],complet:[3,5],compon:9,compress:0,comput:[1,3,5,8,11],computation:4,compute_fpr:11,compute_t:11,compute_tpr:11,concept:6,concur:11,conduct:0,confer:[0,3,10],configur:[4,8],consecut:9,consid:[3,5,9,10],consist:[0,4,5,9,10],constrain:[1,5],constructor:3,consult:[0,1],contain:[1,2,3,5,8,9,10,11],contanin:8,content:7,context:8,contrast:1,control:[1,4],conv_block:[],conv_lay:[],convert:[1,3,9],convolut:9,copi:10,cornel:[],correct:11,correspond:[5,10],cost:1,costli:4,could:[0,1,3,4,5,6,11],count:[4,5,6,10,11],count_:[],counter:10,countvector:10,covari:10,cover:[1,4,9],coz:[0,3,11],cpu:[1,9],creat:[0,6,8],create_if_not_exist:8,create_parent_dir:8,crisp:3,criteria:4,cross:[3,11],cs:[],csr_matrix:10,csv:10,ctg:0,cuda:[3,9,11],cumbersom:1,curios:5,current:[3,8,9,10],custom:[3,6,8],customarili:[3,4],cv:[3,4],cyan:5,dat:[0,9],data:[1,3,4,5,6,7,8,9,11],data_hom:10,datafram:1,dataload:9,dataset:[1,3,4,5,6,7,8,9,11],dataset_nam:10,deal:0,decaesteck:[3,11],decai:9,decim:1,decis:[3,9],decision_funct:9,decomposit:9,dedic:1,deep:[3,8,11],def:[0,1,3,5,8],defin:[0,3,8,9,11],degre:4,del:[0,3,11],delai:8,deliv:3,dens:0,depend:[0,1,4,5,8],describ:[3,11],descript:0,design:4,desir:[0,1],despit:1,detail:[0,1,3,6,9,11],determin:[1,4,5],detriment:5,devel:10,develop:[4,6],deviat:[0,1,5],devic:[0,3,5,9,11],df:[1,10],df_replac:10,diabet:0,diagon:6,dict:[8,10,11],dictionari:[8,9],differ:[0,1,3,4,5,6,8,10],difficult:5,digit:0,dimens:[8,9,10],dimension:[8,9,10],directli:[0,1,3],directori:[2,9,10],discoveri:[3,11],discuss:5,disjoint:9,displai:[1,5],distanc:11,distant:[1,8],distribut:[0,3,5,8,11],diverg:[1,3],dl:[],doabl:0,doc_embed:11,doc_embedding_s:11,doc_posterior:11,document:[0,1,3,5,9,10,11],document_embed:9,doe:[0,2,3,8],doi:[],done:3,dot:5,down:5,download:[0,2,3],download_fil:8,download_file_if_not_exist:8,drawn:[0,1,4],drift:6,drop:[9,11],drop_p:9,dropout:9,ds:[3,11],ds_polici:11,ds_policy_get_posterior:11,dtype:1,dump:10,dure:[1,5],dynam:[3,9,11],e:[0,1,3,4,5,6,8,9,10,11],eacc:11,each:[0,1,3,4,5,8,9,10,11],earli:9,early_stop:11,earlystop:8,easili:[0,2,5,9],ecc:11,edu:[],eemq:11,effect:3,effici:3,ehdi:11,either:[1,3,8,11],element:3,elm:[3,11],em:11,emb:9,embed:[3,9],embed_s:9,embedding_s:9,empti:10,emq:[5,11],enabl:9,encod:10,end:[4,8],endeavour:6,enough:5,ensembl:[0,6,11],ensemblefactori:11,ensure_probabilist:11,entir:[0,3,4,5],environ:[1,3,4,5,8],ep:[1,8],epacc:11,epoch:[9,11],epsilon:[1,11],equal:[1,8],equidist:[0,8],equip:[3,5],err:8,err_drift:5,err_nam:8,error:[3,4,6,7,9],error_:[],error_by_drift:[5,8],error_funct:1,error_metr:[1,4,8],error_nam:[5,8,11],establish:8,estim:[1,3,5,6,8,9,11],estim_prev:[1,5,8],estim_preval:[3,6],esuli:[0,2,3,9,10,11],et:[0,2,9],etc:6,eval_budget:[4,8],evalu:[0,3,4,5,6,7,9],eventu:9,everi:[3,11],everyth:3,evinc:5,ex:[],exact:0,exactli:0,exampl:[0,1,3,4,5,8,9,11],exce:8,excel:0,except:[3,8],exemplifi:0,exhibit:[4,5],exist:8,expand_frame_repr:1,expect:6,expectationmaximizationquantifi:[3,11],experi:[1,2,3,4,5,8],explain:[1,5],explicitlossminim:11,explicitlossminimis:11,explor:[4,8],express:10,ext:2,extend:[2,3,11],extens:[0,2,5],extern:3,extract:[1,8],f1:[1,9],f1_error:8,f1e:[1,8],f:[0,1,3,4,5,6,10,11],fabrizio:4,facilit:6,fact:[3,5],fals:[1,3,5,8,9,10,11],famili:3,familiar:3,far:9,fast:8,faster:[0,10],feat1:10,feat2:10,featn:10,featur:0,feature_extract:10,fetch:[0,6],fetch_review:[0,1,3,4,5,10],fetch_twitt:[0,3,6,10],fetch_ucidataset:[0,3,10],fetch_ucilabelledcollect:[0,10],ff_layer:11,fhe:0,file:[0,5,9,10],fin:0,find:[0,4],finish:4,first:[0,1,2,3,5,8,10,11],fit:[1,3,4,5,6,8,9,10,11],fit_learn:[3,11],fit_transform:10,fix:[1,4],float64:1,fold:[3,11],folder:0,follow:[0,1,3,4,5,6],fomart:10,for_model_select:[0,10],form:0,format:[0,5,10],former:[2,11],forward:[9,11],found:[0,3,4,9],four:3,fp:11,fpr:8,framework:6,frequenc:0,from:[0,1,3,4,5,6,8,10,11],from_csv:10,from_nam:[1,8],from_spars:10,from_text:10,full:1,fulli:0,func:8,further:[0,1,3,9],fusion:[0,3,11],futur:3,g:[0,1,3,4,6,8,10,11],gao:[0,3,10,11],gasp:[0,10],gen:8,gen_data:5,gen_fn:8,gen_prevalence_predict:8,gener:[0,1,3,4,5,8,9,10,11],generation_func:8,german:0,get:[0,1,5,8,9],get_aggregative_estim:11,get_nprevpoints_approxim:[1,8],get_param:[3,8,9,11],get_probability_distribut:11,get_quapy_hom:8,github:[],given:[1,3,4,9,11],goe:4,good:[4,5],got:4,govern:1,gpu:9,grant:11,grid:[4,8,11],gridsearchcv:4,gridsearchq:[4,8],group:3,guarante:11,guez:[3,11],gzip:0,ha:[3,4,5,9],haberman:[0,3],handl:0,happen:[4,5],hard:3,harder:5,harri:0,have:[0,1,2,3,4,5,10,11],hcr:[0,3,10],hdy:[6,11],held:[3,4,9],helling:11,hellingerdist:8,hellingerdistancei:[3,11],help:5,here:1,hidden:[5,9],hidden_s:9,hide:5,high:5,higher:[1,5],hlt:[],hold:6,home:10,hook:11,how:[0,1,3,4,5,11],howev:[0,4,5,11],hp:[0,3,4,10],html:[],http:[],hyper:[4,8,9],hyperparam:4,hyperparamet:[3,8,11],i:[0,1,3,4,5,8,9,10,11],id:[0,3,10],idf:0,ieee:0,ignor:[8,10,11],iid:[1,5,6],illustr:[3,4,5],imdb:[0,5,10],implement:[0,1,3,4,5,6,9,11],impos:4,improv:[3,9],includ:[0,1,3,5,6],inde:[3,4],index:[0,3,6,9,10],indextransform:10,indic:[0,1,3,4,5,8,10,11],individu:[1,3],infer:0,inform:[0,1,3,4,8,10,11],infrequ:10,inherit:3,init:3,init_hidden:11,initi:[0,9],inplac:[1,3,10],input:[3,5,8,9],insight:5,inspir:3,instal:[0,3,6,9],instanc:[0,3,4,5,6,8,9,10,11],instanti:[0,1,3,4,9],instead:[1,3,4,11],integ:[3,9,10],integr:6,interest:[1,5,6],interestingli:5,interfac:[0,1],intern:[0,3,10],interpret:[5,6],interv:[1,5,8],introduc:1,invok:[0,1,3,8,10],involv:[2,5],io:[],ionospher:0,iri:0,irrespect:5,isaggreg:11,isbinari:[8,10,11],isometr:5,isprobabilist:11,isti:[],item:8,iter:[0,8,11],its:[3,4,9],itself:[3,11],j:[0,3,11],joachim:[3,9],job:[2,8],joblib:2,just:[1,3],k:[3,6,11],kei:8,kept:10,kernel:9,kernel_height:9,kfcv:[0,10,11],kindl:[0,1,3,5,10],kld:[1,2,8,9],know:3,knowledg:[0,3,10,11],known:[0,3,4],kullback:[1,3],kwarg:[9,10,11],l1:11,label:[0,3,4,5,6,8,9,10,11],labelledcollect:[0,3,4,8,10,11],larg:4,largest:8,last:[1,3,5,9],lastli:3,latex:5,latinn:[3,11],latter:11,layer:[3,9],lead:1,learn:[1,2,3,4,6,8,9,11],learner:[3,4,9,11],least:[0,10],leav:10,legend:8,leibler:[1,3],length:9,less:[8,10],let:[1,3],level:11,leverag:3,like:[0,1,3,5,9],limit:[5,8],line:[1,3],linear:5,linear_model:[1,3,4,6,9],linearsvc:[3,5],linspac:5,list:[0,5,8,9,10],listedcolormap:8,literatur:[0,1,4,6],load:[0,3,8,10],loader:0,loader_func:[0,10],local:8,log:10,logist:[1,3,9,11],logisticregress:[1,3,4,6,9],logscal:8,logspac:4,longer:8,longest:9,look:[0,1,3,5],loss:[6,9,11],low:[5,9],lower:[5,8],lower_is_bett:8,lowest:5,lowranklogisticregress:9,lr:[1,3,9,11],lstm:[3,9],lstm_class_nlay:9,lstm_hidden_s:11,lstm_nlayer:11,lstmnet:9,m:[3,8,11],machin:[1,4,6],made:[0,2,11],mae:[1,4,6,8,9,11],mae_loss:11,main:5,maintain:[3,11],make:[0,1,3],mammograph:0,manag:[0,3,10],mani:[1,3,4,5,6,11],manner:0,manual:0,map:[1,9],map_parallel:8,margin:9,matplotlib:[2,8],matric:[0,5,10],matrix:5,max:11,max_it:11,max_sample_s:11,maxim:6,maximum:[1,8,9],maximumlikelihoodprevalenceestim:11,md:[],mean:[0,1,3,4,5,6,9,10,11],mean_absolute_error:8,mean_relative_absolute_error:8,measur:[2,3,4,5,6,11],mediansweep2:11,mediansweep:11,member:3,memori:9,mention:3,merg:5,meta:[6,7,8],method:[0,1,4,5,6,7,8],method_data:5,method_nam:[5,8],metric:[1,3,4,6,8],might:1,min_df:[1,3,4,5,10],min_po:11,mine:[0,3,11],minim:8,minimum:10,minimun:10,mining6:10,mixtur:3,mkld:[1,8,11],mnkld:[1,8,11],mock:9,modal:4,model:[0,1,5,6,8,9,11],model_select:[4,7],modifi:[3,8],modul:[0,1,3,5,6,7],moment:[0,3],more:[3,5,8],moreo:[0,3,4,10],most:[0,3,5,6,11],movi:0,mrae:[1,6,8,9,11],ms2:11,ms:11,mse:[1,3,6,8,11],msg:11,multiprocess:8,multivari:[3,9,11],must:3,my:[],my_arrai:8,my_custom_load:0,my_data:0,mycustomloss:3,n:[0,1,8,9],n_bin:[5,8],n_class:[1,3,8,9,10,11],n_compon:9,n_dimens:9,n_epoch:11,n_featur:9,n_instanc:9,n_job:[1,3,4,8,10,11],n_preval:[0,8,10],n_prevpoint:[1,4,5,8],n_repeat:[1,8],n_repetit:[1,4,5,8],n_sampl:9,name:[5,8,9,10],nativ:6,natur:[1,8],natural_prevalence_predict:8,natural_prevalence_protocol:8,natural_prevalence_report:8,natural_sampling_gener:10,natural_sampling_index_gener:10,nbin:[5,8],ndarrai:[1,3,8,10,11],necessarili:11,need:[0,3,11],neg:[0,5],nest:[],net:9,network:[0,9,10,11],neural:[0,7,8,10],neuralclassifiertrain:[3,9],neutral:0,next:[4,8,9],nfold:[0,10],nkld:[1,2,6,8,9],nn:[9,11],nogap:10,non:[3,11],non_aggreg:[7,8],none:[1,4,8,9,10,11],nonetheless:4,nor:3,normal:[0,1,3,11],normalize_preval:8,note:[1,3,4,5],now:5,nowadai:3,np:[1,3,4,5,8],npp:8,nprevpoint:8,nrepeat:[0,10],num_prevalence_combin:[1,8],number:[0,1,3,5,8,9,10,11],numer:[0,1,3,6,10],numpi:[2,4,8,9,11],o_l6x_pcf09mdetq4tu7jk98mxfbgsxp9zso14jkuiyudgfg0:[],object:[0,8,9,10,11],observ:1,obtain:[1,4],occur:[5,10],occurr:10,octob:[0,3],off:9,offer:[3,6],older:2,omd:[0,10],ommit:1,onc:[1,3,5,8],one:[0,1,3,4,5,8,11],ones:[1,3,5,8,10],onevsal:[3,11],onli:[0,3,5,8,9,11],open:[0,6],oper:3,opt:4,optim:[2,3,4,8,9,11],optimize_threshold:11,option:[0,1,3,5,8,10,11],order:[0,2,3,5,8,10,11],order_bi:11,org:[],orient:[3,6,8,11],origin:[0,3,10,11],os:0,other:[1,3,5,6,8],otherwis:[0,3,11],our:[],out:[3,4,5,9],outcom:5,outer:8,output:[0,1,3,4,9,11],over:[3,4],overal:1,overestim:5,overrid:3,overridden:[3,11],own:4,p:[0,3,8,11],p_hat:8,pacc:[1,3,5,11],packag:[0,2,3,6,7],pad:9,pad_length:9,padding_length:9,page:[0,2,6],pageblock:0,pair:0,panda:[1,2],paper:[0,3,11],parallel:[1,3,8],param:[4,8,9,10,11],param_grid:[4,8,11],param_mod_sel:11,param_model_sel:11,paramet:[1,3,4,8,9,10,11],part:[3,10],particular:[0,1,3],particularli:1,pass:[0,1,5,9,11],past:1,patch:[2,3,9],path:[0,3,5,8,9,10],patienc:[8,9,11],pattern:[3,11],pca:9,pcalr:[],pcc:[3,4,5,11],pd:1,pdf:5,peopl:[],perf:[6,9],perform:[1,3,4,5,6,8,9,11],phonem:0,pick:4,pickl:[3,8,10],pickle_path:8,pickled_resourc:8,pii:[],pip:2,pipelin:[],pkl:8,plai:0,plan:3,pleas:3,plot:[6,7],png:5,point:[0,1,3,8],polici:[3,11],popular:6,portion:4,pos_class:[8,10],posit:[0,3,5],possibl:[1,3,8],posterior:[3,8,9,11],posterior_prob:[3,11],postpon:3,potter:0,pp:[0,3],practic:[0,4],pre:[0,3],prec:[0,8],precis:[0,1],preclassifi:3,predict:[3,4,5,8,9,11],predict_proba:[3,9,11],predictor:1,prepare_svmperf:[2,3],preprint:4,preprocess:[0,1,3,7,8],present:[0,3,10],preserv:[1,5],pretti:5,prev:[0,1,8,10],prevail:3,preval:[0,1,3,4,5,6,8,10,11],prevalence_estim:8,prevalence_from_label:8,prevalence_from_prob:8,prevalence_linspac:8,prevel:11,previou:3,previous:11,prevs_estim:11,prevs_hat:[1,8],princip:9,print:[0,1,3,4,6,9],prior:[1,3,4,5,6],priori:[3,11],probabilist:[3,11],probabilisticadjustedclassifyandcount:11,probabilisticclassifyandcount:11,probabl:[1,3,4,5,6,9,11],problem:[0,3,5,11],procedur:[3,6,11],proceed:[0,3,10],process:[3,4,8],processor:3,procol:1,produc:[0,1,5,8],product:3,progress:8,properli:0,properti:[3,8,9,10,11],proport:[3,4,8,9,11],propos:[2,3,11],protocl:8,protocol:[0,3,4,5,6,8],provid:[0,3,5,6],ptecondestim:11,ptr:[3,11],ptr_polici:11,purpos:[0,11],python:[0,6],pytorch:2,q:[0,2,3,8,9],qacc:9,qdrop_p:11,qf1:9,qgm:9,qp:[0,1,3,4,5,6,8],quanet:[2,6,9,11],quanetmodul:11,quanettrain:11,quantif:[0,1,6,8,9,10,11],quantifi:[3,4,5,6,8,11],quantification_error:8,quantiti:8,quapi:[0,1,2,3,4,5],quapy_data:0,quay_data:10,quevedo:[0,3,11],quick:[],r:[0,3,11],rae:[1,2,8],rais:[3,8],rand:8,random:[1,3,4,5,8],random_se:[1,8],random_st:10,randomli:0,rang:[0,5],rank:[3,9],rare:10,rate:[3,9],rather:[1,4],raw:10,rb:0,re:[3,4,10],read:10,reader:[7,8],readm:[],real:[9,10],reason:[3,5,6],receiv:[0,3,5],recip:11,recognit:[3,11],recommend:[1,5],recurr:[0,3,10],red:0,red_siz:[3,11],reduc:[0,10],reduce_column:[0,10],refer:[9,10],refit:[4,8],regard:4,regist:11,regress:9,regressor:[1,3,11],reindex_label:10,reiniti:9,rel:[1,3],relative_absolute_error:8,reli:[1,3],reliabl:[3,11],rememb:5,remov:10,repeat:[8,10],repetit:8,repl:10,replac:[0,3,10],replic:[1,4,8],report:1,repositori:0,repr_siz:9,repres:[1,3,5,10,11],represent:[0,3],request:[0,8,11],requir:[0,1,3,6,9],reset_net_param:9,resourc:8,respect:[0,1,5,11],respond:3,rest:[10,11],result:[1,2,3,4,5,6,11],retain:[0,3,9],retrain:4,return_constrained_dim:8,reus:[0,3,8],review:[5,6,10],reviews_sentiment_dataset:0,rewrit:5,right:4,role:0,root:6,roughli:0,routin:8,row:10,run:[0,1,2,3,4,5,8,11],s003132031400291x:[],s:[0,1,3,4,5,8,9,10],saeren:[3,11],sai:11,said:3,same:[0,3,5,10],sampl:[0,1,3,4,5,6,8,9,10,11],sample_s:[0,1,3,4,5,8,10,11],sampling_from_index:[0,10],sampling_index:[0,10],sander:[0,10],save:[5,8],save_or_show:8,save_text_fil:8,savepath:[5,8],scall:10,scenario:[1,3,4,5,6],scienc:[3,11],sciencedirect:[],scikit:[2,3,4],scipi:[2,10],score:[0,1,4,9,10],script:[1,2,3,6],se:[1,8],search:[3,4,6,8,11],sebastiani:[0,3,4,10,11],second:[0,1,3,5,8],section:4,see:[0,1,2,3,4,5,6,9],seed:[1,4,8],seem:3,seemingli:5,seen:5,select:[0,3,6,8,11],selector:3,self:[3,9,10,11],semeion:0,semev:0,semeval13:[0,10],semeval14:[0,10],semeval15:[0,10],semeval16:[0,6,10],sentenc:10,sentiment:[3,6,10,11],separ:[8,10],seri:0,serv:3,set:[0,1,3,4,5,6,8,9,10,11],set_opt:1,set_param:[3,8,9,11],set_siz:[],sever:0,sh:[2,3],shape:[5,8,9],share:[0,10],shift:[1,4,6,8],shorter:9,shoud:3,should:[0,1,3,4,5,6,9,10,11],show:[0,1,3,4,5,8,9,10],show_std:[5,8],showcas:5,shown:[1,5],shuffl:[9,10],signific:1,silent:[8,11],similar:11,simpl:[0,3,5,11],simplest:3,simplex:[0,8],simpli:[1,2,3,4,5,6,11],sinc:[0,1,3,5,8,11],singl:[1,3,6,11],size:[0,1,3,8,9,10,11],sklearn:[1,3,4,5,6,9,10,11],sld:3,slice:8,smooth:[1,8],smooth_limits_epsilon:8,so:[0,1,3,5,8,9,11],social:[0,3,10,11],soft:3,softwar:0,solid:5,solv:4,solve_adjust:11,some:[0,1,3,5],some_arrai:8,sometim:1,sonar:0,sourc:[2,3,6,9],sout:11,space:[0,4,9],spambas:0,spars:[0,10],special:[0,5,10],specif:[3,4],specifi:[0,1,3,5,8,9,10,11],spectf:0,spectrum:[0,1,4,5],speed:3,split:[0,3,4,5,9,10,11],split_stratifi:10,splitstratifi:10,spmatrix:10,squar:[1,3],sst:[0,10],stabil:1,standard:[0,1,5,10],start:4,stat:10,state:8,statist:[0,1,11],stats_siz:11,std:9,stdout:8,step:[5,8],stop:9,store:[0,9,10],str:[0,8,10],strategi:[3,4],stratifi:[0,3],stride:9,string:[1,8,10],strongli:[4,5],strprev:[0,1,8],structur:3,studi:[0,3,11],subclass:11,subinterv:5,sublinear_tf:10,submit:0,submodul:7,subobject:[],suboptim:4,subpackag:7,subsequ:[10,11],subtract:[0,8],subtyp:10,suffic:5,suffici:11,sum:11,summar:0,supervis:[4,6],support:[3,6,9],surpass:1,svm:[3,5,6,9],svm_light:[],svm_perf:[],svm_perf_classifi:9,svm_perf_learn:9,svm_perf_quantif:[2,3],svmae:[3,11],svmkld:[3,11],svmnkld:[3,11],svmperf:[2,3,7,8],svmperf_bas:[9,11],svmperf_hom:3,svmq:[3,11],svmrae:[3,11],syntax:5,system:4,t50:11,t:[0,1,3],take:[0,3,5,8,11],taken:[3,9],target:[3,5,6,8,9,11],task:[3,4,11],temp_se:8,tempor:8,tend:5,tendenc:5,tensor:9,term:[0,1,3,4,5,6,9,10,11],test:[0,1,3,4,5,6,8,9,10,11],test_bas:[],test_dataset:[],test_method:[],test_path:[0,10],test_sampl:8,test_split:10,text2tfidf:[0,1,3,10],text:[0,3,8,9,10,11],textclassifiernet:9,textual:[0,6,10],tf:[0,10],tfidf:[0,4,5,10],tfidfvector:10,than:[1,4,5,8,9,10],thei:[0,3],them:[0,3,11],theoret:4,thereaft:1,thi:[0,1,2,3,4,5,6,8,9,11],thing:3,third:[1,5],thorsten:9,those:[1,3,4,5,8,9],though:3,three:[0,5],thresholdoptim:11,through:[3,8],thu:[3,4,5,11],tictacto:0,time:[0,1,3,8,10],timeout:8,timeouterror:8,timer:8,titl:8,tj:[],tn:11,token:[0,9,10],tool:[1,6],top:[3,11],torch:[3,9,11],torchdataset:9,toward:5,tp:11,tpr:8,tqdm:2,tr_iter_per_poch:11,tr_prev:[5,8,11],trade:9,tradition:1,train:[0,1,3,4,5,6,8,9,10,11],train_path:[0,10],train_prev:[5,8],train_prop:10,train_siz:10,train_val_split:11,trainer:9,training_help:11,training_preval:5,training_s:5,transact:[3,11],transform:[0,9,10],transfus:0,trivial:3,true_prev:[1,5,8],true_preval:6,truncatedsvd:9,turn:4,tweet:[0,3,10,11],twitter:[6,10],twitter_sentiment_datasets_test:0,twitter_sentiment_datasets_train:0,two:[0,1,3,4,5,8],type:[0,3],typic:[1,4,5,9],uci:6,unabl:0,unadjust:5,unbias:5,uncompress:0,under:1,underestim:5,unfortun:5,unifi:0,uniform_prevalence_sampl:8,uniform_sampl:10,uniform_sampling_index:10,uniform_simplex_sampl:8,uniformli:8,union:[8,11],uniqu:10,unit:0,unix:0,unk:10,unless:11,unlik:[1,4],unus:[8,9,11],up:[3,4,8,9,11],updat:[],url:8,us:[0,1,3,4,5,6,8,9,10,11],user:[0,1,5],utf:10,util:[7,9],v:[3,11],va_iter_per_poch:11,val:[0,10],val_split:[3,4,8,9,11],valid:[0,1,3,4,5,8,9,10,11],valid_loss:[3,9],valid_polici:11,valu:[0,1,3,8,9,10,11],variabl:[1,3,5,8],varianc:[0,5],variant:[5,6,11],varieti:4,variou:[1,5],vector:[0,9,10],verbos:[0,1,4,8,9,10,11],veri:[3,5],versatil:6,version:[2,9],vertical_xtick:8,via:[0,2,3,11],view:5,visual:[5,6],vocab_s:9,vocabulari:[9,10],vocabulary_s:[3,9,10],vs:3,w:[0,3,10,11],wa:[0,3,5,10,11],wai:[1,11],wait:9,want:[3,4],warn:10,wb:[0,10],wdbc:0,we:[0,1,3,4,5,6],weight:[9,10],weight_decai:9,well:[0,3,4,5],were:0,what:3,when:[0,1,3,4,5,8,9],whenev:[5,8],where:[3,5,8,9,10,11],wherebi:4,whether:[8,9,10,11],which:[0,1,3,4,5,8,9,10,11],white:0,whole:[0,1,3,4,8],why:3,wide:5,wiki:[0,3],wine:0,within:[8,11],without:[1,3,8],word:[1,3,6,9,10],work:[1,3,4,5],worker:1,wors:[4,5],would:[0,1,3,5,6,8,11],wrapper:[8,9],written:6,www:[],x:[5,8,9,10,11],xavier:9,xavier_uniform:9,xlrd:[0,2],xy:10,y:[5,9,10,11],y_:11,y_pred:8,y_true:8,ye:10,yeast:0,yield:[5,8],you:[2,3],your:3,z:0,zero:0,zfthyovrzwxmgfzylqw_y8cagg:[],zip:[0,5]},titles:["Datasets","Evaluation","Installation","Quantification Methods","Model Selection","Plotting","Welcome to QuaPy\u2019s documentation!","quapy","quapy package","quapy.classification package","quapy.data package","quapy.method package"],titleterms:{"function":8,A:6,The:3,ad:0,aggreg:[3,11],base:[10,11],bia:5,classif:[4,9],classifi:3,content:[6,8,9,10,11],count:3,custom:0,data:[0,10],dataset:[0,10],diagon:5,distanc:3,document:6,drift:5,emq:3,ensembl:3,error:[1,5,8],evalu:[1,8],ex:[],exampl:6,expect:3,explicit:3,featur:6,get:[],hdy:3,helling:3,indic:6,instal:2,introduct:6,issu:0,learn:0,loss:[2,3,4],machin:0,maxim:3,measur:1,meta:[3,11],method:[3,9,11],minim:3,model:[3,4],model_select:8,modul:[8,9,10,11],network:3,neural:[3,9,11],non_aggreg:11,orient:[2,4],packag:[8,9,10,11],perf:2,plot:[5,8],preprocess:10,process:0,protocol:1,quanet:3,quantif:[2,3,4,5],quapi:[6,7,8,9,10,11],quick:6,reader:10,readm:[],requir:2,review:0,s:6,select:4,sentiment:0,start:[],submodul:[8,9,10,11],subpackag:8,svm:2,svmperf:9,tabl:6,target:4,test:[],test_bas:[],test_dataset:[],test_method:[],titl:[],twitter:0,uci:0,util:8,variant:3,welcom:6,y:3}})
\ No newline at end of file
+Search.setIndex({docnames:["Datasets","Evaluation","Installation","Methods","Model-Selection","Plotting","index","modules","quapy","quapy.classification","quapy.data","quapy.method"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":4,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,sphinx:56},filenames:["Datasets.md","Evaluation.md","Installation.rst","Methods.md","Model-Selection.md","Plotting.md","index.rst","modules.rst","quapy.rst","quapy.classification.rst","quapy.data.rst","quapy.method.rst"],objects:{"":{quapy:[8,0,0,"-"]},"quapy.classification":{methods:[9,0,0,"-"],neural:[9,0,0,"-"],svmperf:[9,0,0,"-"]},"quapy.classification.methods":{LowRankLogisticRegression:[9,1,1,""]},"quapy.classification.methods.LowRankLogisticRegression":{fit:[9,2,1,""],get_params:[9,2,1,""],predict:[9,2,1,""],predict_proba:[9,2,1,""],set_params:[9,2,1,""],transform:[9,2,1,""]},"quapy.classification.neural":{CNNnet:[9,1,1,""],LSTMnet:[9,1,1,""],NeuralClassifierTrainer:[9,1,1,""],TextClassifierNet:[9,1,1,""],TorchDataset:[9,1,1,""]},"quapy.classification.neural.CNNnet":{document_embedding:[9,2,1,""],get_params:[9,2,1,""],vocabulary_size:[9,3,1,""]},"quapy.classification.neural.LSTMnet":{document_embedding:[9,2,1,""],get_params:[9,2,1,""],vocabulary_size:[9,3,1,""]},"quapy.classification.neural.NeuralClassifierTrainer":{device:[9,3,1,""],fit:[9,2,1,""],get_params:[9,2,1,""],predict:[9,2,1,""],predict_proba:[9,2,1,""],reset_net_params:[9,2,1,""],set_params:[9,2,1,""],transform:[9,2,1,""]},"quapy.classification.neural.TextClassifierNet":{dimensions:[9,2,1,""],document_embedding:[9,2,1,""],forward:[9,2,1,""],get_params:[9,2,1,""],predict_proba:[9,2,1,""],vocabulary_size:[9,3,1,""],xavier_uniform:[9,2,1,""]},"quapy.classification.neural.TorchDataset":{asDataloader:[9,2,1,""]},"quapy.classification.svmperf":{SVMperf:[9,1,1,""]},"quapy.classification.svmperf.SVMperf":{decision_function:[9,2,1,""],fit:[9,2,1,""],predict:[9,2,1,""],set_params:[9,2,1,""],valid_losses:[9,4,1,""]},"quapy.data":{base:[10,0,0,"-"],datasets:[10,0,0,"-"],preprocessing:[10,0,0,"-"],reader:[10,0,0,"-"]},"quapy.data.base":{Dataset:[10,1,1,""],LabelledCollection:[10,1,1,""],isbinary:[10,5,1,""]},"quapy.data.base.Dataset":{SplitStratified:[10,2,1,""],binary:[10,3,1,""],classes_:[10,3,1,""],kFCV:[10,2,1,""],load:[10,2,1,""],n_classes:[10,3,1,""],stats:[10,2,1,""],vocabulary_size:[10,3,1,""]},"quapy.data.base.LabelledCollection":{Xy:[10,3,1,""],artificial_sampling_generator:[10,2,1,""],artificial_sampling_index_generator:[10,2,1,""],binary:[10,3,1,""],counts:[10,2,1,""],kFCV:[10,2,1,""],load:[10,2,1,""],n_classes:[10,3,1,""],natural_sampling_generator:[10,2,1,""],natural_sampling_index_generator:[10,2,1,""],prevalence:[10,2,1,""],sampling:[10,2,1,""],sampling_from_index:[10,2,1,""],sampling_index:[10,2,1,""],split_stratified:[10,2,1,""],stats:[10,2,1,""],uniform_sampling:[10,2,1,""],uniform_sampling_index:[10,2,1,""]},"quapy.data.datasets":{df_replace:[10,5,1,""],fetch_UCIDataset:[10,5,1,""],fetch_UCILabelledCollection:[10,5,1,""],fetch_reviews:[10,5,1,""],fetch_twitter:[10,5,1,""],warn:[10,5,1,""]},"quapy.data.preprocessing":{IndexTransformer:[10,1,1,""],index:[10,5,1,""],reduce_columns:[10,5,1,""],standardize:[10,5,1,""],text2tfidf:[10,5,1,""]},"quapy.data.preprocessing.IndexTransformer":{add_word:[10,2,1,""],fit:[10,2,1,""],fit_transform:[10,2,1,""],index:[10,2,1,""],transform:[10,2,1,""],vocabulary_size:[10,2,1,""]},"quapy.data.reader":{binarize:[10,5,1,""],from_csv:[10,5,1,""],from_sparse:[10,5,1,""],from_text:[10,5,1,""],reindex_labels:[10,5,1,""]},"quapy.error":{absolute_error:[8,5,1,""],acc_error:[8,5,1,""],acce:[8,5,1,""],ae:[8,5,1,""],f1_error:[8,5,1,""],f1e:[8,5,1,""],from_name:[8,5,1,""],kld:[8,5,1,""],mae:[8,5,1,""],mean_absolute_error:[8,5,1,""],mean_relative_absolute_error:[8,5,1,""],mkld:[8,5,1,""],mnkld:[8,5,1,""],mrae:[8,5,1,""],mse:[8,5,1,""],nkld:[8,5,1,""],rae:[8,5,1,""],relative_absolute_error:[8,5,1,""],se:[8,5,1,""],smooth:[8,5,1,""]},"quapy.evaluation":{artificial_prevalence_prediction:[8,5,1,""],artificial_prevalence_protocol:[8,5,1,""],artificial_prevalence_report:[8,5,1,""],evaluate:[8,5,1,""],gen_prevalence_prediction:[8,5,1,""],natural_prevalence_prediction:[8,5,1,""],natural_prevalence_protocol:[8,5,1,""],natural_prevalence_report:[8,5,1,""]},"quapy.functional":{HellingerDistance:[8,5,1,""],adjusted_quantification:[8,5,1,""],artificial_prevalence_sampling:[8,5,1,""],get_nprevpoints_approximation:[8,5,1,""],normalize_prevalence:[8,5,1,""],num_prevalence_combinations:[8,5,1,""],prevalence_from_labels:[8,5,1,""],prevalence_from_probabilities:[8,5,1,""],prevalence_linspace:[8,5,1,""],strprev:[8,5,1,""],uniform_prevalence_sampling:[8,5,1,""],uniform_simplex_sampling:[8,5,1,""]},"quapy.method":{aggregative:[11,0,0,"-"],base:[11,0,0,"-"],meta:[11,0,0,"-"],neural:[11,0,0,"-"],non_aggregative:[11,0,0,"-"]},"quapy.method.aggregative":{ACC:[11,1,1,""],AdjustedClassifyAndCount:[11,4,1,""],AggregativeProbabilisticQuantifier:[11,1,1,""],AggregativeQuantifier:[11,1,1,""],CC:[11,1,1,""],ClassifyAndCount:[11,4,1,""],ELM:[11,1,1,""],EMQ:[11,1,1,""],ExpectationMaximizationQuantifier:[11,4,1,""],ExplicitLossMinimisation:[11,4,1,""],HDy:[11,1,1,""],HellingerDistanceY:[11,4,1,""],MAX:[11,1,1,""],MS2:[11,1,1,""],MS:[11,1,1,""],MedianSweep2:[11,4,1,""],MedianSweep:[11,4,1,""],OneVsAll:[11,1,1,""],PACC:[11,1,1,""],PCC:[11,1,1,""],ProbabilisticAdjustedClassifyAndCount:[11,4,1,""],ProbabilisticClassifyAndCount:[11,4,1,""],SVMAE:[11,1,1,""],SVMKLD:[11,1,1,""],SVMNKLD:[11,1,1,""],SVMQ:[11,1,1,""],SVMRAE:[11,1,1,""],T50:[11,1,1,""],ThresholdOptimization:[11,1,1,""],X:[11,1,1,""],training_helper:[11,5,1,""]},"quapy.method.aggregative.ACC":{aggregate:[11,2,1,""],classify:[11,2,1,""],fit:[11,2,1,""],solve_adjustment:[11,2,1,""]},"quapy.method.aggregative.AggregativeProbabilisticQuantifier":{posterior_probabilities:[11,2,1,""],predict_proba:[11,2,1,""],probabilistic:[11,3,1,""],quantify:[11,2,1,""],set_params:[11,2,1,""]},"quapy.method.aggregative.AggregativeQuantifier":{aggregate:[11,2,1,""],aggregative:[11,3,1,""],classes_:[11,3,1,""],classify:[11,2,1,""],fit:[11,2,1,""],get_params:[11,2,1,""],learner:[11,3,1,""],n_classes:[11,3,1,""],quantify:[11,2,1,""],set_params:[11,2,1,""]},"quapy.method.aggregative.CC":{aggregate:[11,2,1,""],fit:[11,2,1,""]},"quapy.method.aggregative.ELM":{aggregate:[11,2,1,""],classify:[11,2,1,""],fit:[11,2,1,""]},"quapy.method.aggregative.EMQ":{EM:[11,2,1,""],EPSILON:[11,4,1,""],MAX_ITER:[11,4,1,""],aggregate:[11,2,1,""],fit:[11,2,1,""],predict_proba:[11,2,1,""]},"quapy.method.aggregative.HDy":{aggregate:[11,2,1,""],fit:[11,2,1,""]},"quapy.method.aggregative.MS":{optimize_threshold:[11,2,1,""]},"quapy.method.aggregative.MS2":{optimize_threshold:[11,2,1,""]},"quapy.method.aggregative.OneVsAll":{aggregate:[11,2,1,""],binary:[11,3,1,""],classes_:[11,3,1,""],classify:[11,2,1,""],fit:[11,2,1,""],get_params:[11,2,1,""],posterior_probabilities:[11,2,1,""],probabilistic:[11,3,1,""],quantify:[11,2,1,""],set_params:[11,2,1,""]},"quapy.method.aggregative.PACC":{aggregate:[11,2,1,""],classify:[11,2,1,""],fit:[11,2,1,""]},"quapy.method.aggregative.PCC":{aggregate:[11,2,1,""],fit:[11,2,1,""]},"quapy.method.aggregative.ThresholdOptimization":{aggregate:[11,2,1,""],compute_fpr:[11,2,1,""],compute_table:[11,2,1,""],compute_tpr:[11,2,1,""],fit:[11,2,1,""],optimize_threshold:[11,2,1,""]},"quapy.method.base":{BaseQuantifier:[11,1,1,""],BinaryQuantifier:[11,1,1,""],isaggregative:[11,5,1,""],isbinary:[11,5,1,""],isprobabilistic:[11,5,1,""]},"quapy.method.base.BaseQuantifier":{aggregative:[11,3,1,""],binary:[11,3,1,""],classes_:[11,3,1,""],fit:[11,2,1,""],get_params:[11,2,1,""],probabilistic:[11,3,1,""],quantify:[11,2,1,""],set_params:[11,2,1,""]},"quapy.method.base.BinaryQuantifier":{binary:[11,3,1,""]},"quapy.method.meta":{EACC:[11,5,1,""],ECC:[11,5,1,""],EEMQ:[11,5,1,""],EHDy:[11,5,1,""],EPACC:[11,5,1,""],Ensemble:[11,1,1,""],ensembleFactory:[11,5,1,""],get_probability_distribution:[11,5,1,""]},"quapy.method.meta.Ensemble":{VALID_POLICIES:[11,4,1,""],accuracy_policy:[11,2,1,""],aggregative:[11,3,1,""],binary:[11,3,1,""],classes_:[11,3,1,""],ds_policy:[11,2,1,""],ds_policy_get_posteriors:[11,2,1,""],fit:[11,2,1,""],get_params:[11,2,1,""],probabilistic:[11,3,1,""],ptr_policy:[11,2,1,""],quantify:[11,2,1,""],set_params:[11,2,1,""],sout:[11,2,1,""]},"quapy.method.neural":{QuaNetModule:[11,1,1,""],QuaNetTrainer:[11,1,1,""],mae_loss:[11,5,1,""]},"quapy.method.neural.QuaNetModule":{device:[11,3,1,""],forward:[11,2,1,""],init_hidden:[11,2,1,""]},"quapy.method.neural.QuaNetTrainer":{classes_:[11,3,1,""],clean_checkpoint:[11,2,1,""],clean_checkpoint_dir:[11,2,1,""],epoch:[11,2,1,""],fit:[11,2,1,""],get_aggregative_estims:[11,2,1,""],get_params:[11,2,1,""],quantify:[11,2,1,""],set_params:[11,2,1,""]},"quapy.method.non_aggregative":{MaximumLikelihoodPrevalenceEstimation:[11,1,1,""]},"quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation":{classes_:[11,3,1,""],fit:[11,2,1,""],get_params:[11,2,1,""],quantify:[11,2,1,""],set_params:[11,2,1,""]},"quapy.model_selection":{GridSearchQ:[8,1,1,""]},"quapy.model_selection.GridSearchQ":{best_model:[8,2,1,""],classes_:[8,3,1,""],fit:[8,2,1,""],get_params:[8,2,1,""],quantify:[8,2,1,""],set_params:[8,2,1,""]},"quapy.plot":{binary_bias_bins:[8,5,1,""],binary_bias_global:[8,5,1,""],binary_diagonal:[8,5,1,""],error_by_drift:[8,5,1,""],save_or_show:[8,5,1,""]},"quapy.util":{EarlyStop:[8,1,1,""],create_if_not_exist:[8,5,1,""],create_parent_dir:[8,5,1,""],download_file:[8,5,1,""],download_file_if_not_exists:[8,5,1,""],get_quapy_home:[8,5,1,""],map_parallel:[8,5,1,""],parallel:[8,5,1,""],pickled_resource:[8,5,1,""],save_text_file:[8,5,1,""],temp_seed:[8,5,1,""]},quapy:{classification:[9,0,0,"-"],data:[10,0,0,"-"],error:[8,0,0,"-"],evaluation:[8,0,0,"-"],functional:[8,0,0,"-"],isbinary:[8,5,1,""],method:[11,0,0,"-"],model_selection:[8,0,0,"-"],plot:[8,0,0,"-"],util:[8,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","property","Python property"],"4":["py","attribute","Python attribute"],"5":["py","function","Python function"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:property","4":"py:attribute","5":"py:function"},terms:{"0":[0,1,3,4,5,8,9,10,11],"00":[0,1,4,8],"000":1,"0001":[4,11],"000e":1,"001":[4,9,11],"009":1,"01":[8,9,11],"017":1,"018":0,"02":1,"021":0,"02552":4,"03":1,"034":1,"035":1,"037":1,"04":1,"041":1,"042":1,"046":1,"048":1,"05":[5,8],"055":1,"063":0,"065":0,"070":1,"073":1,"075":1,"078":0,"081":0,"082":[0,1],"083":0,"086":0,"091":1,"099":0,"1":[0,1,3,4,5,8,9,10,11],"10":[0,1,4,5,8,9,11],"100":[0,1,3,4,5,9,10,11],"1000":[0,4,11],"10000":4,"100000":4,"101":[4,10],"1010":4,"1024":11,"104":0,"108":1,"109":0,"11":[0,1,6],"11338":0,"114":1,"1145":[],"12":9,"120":0,"1215742":0,"1271":0,"13":[0,9],"139":0,"14":[3,11],"142":1,"146":[3,11],"1473":0,"148":0,"1484":0,"15":[3,8,11],"150":0,"153":0,"157":0,"158":0,"159":0,"1593":0,"1594":0,"1599":0,"161":0,"163":[0,1],"164":[0,3,11],"167":0,"17":0,"1771":1,"1775":[0,3],"1778":[0,3],"178":0,"1823":0,"1839":0,"18399":0,"1853":0,"19":[3,10,11],"193":0,"199151":0,"19982":4,"1e":9,"1st":0,"2":[0,1,3,5,8,10,11],"20":[5,8,11],"200":[1,9],"2000":0,"2002":[3,11],"2011":4,"2013":[3,11],"2015":[0,2,3,9,11],"2016":[3,10,11],"2017":[0,3,11],"2018":[0,3,10],"2019":[3,11],"2020":4,"20342":4,"206":0,"207":0,"208":0,"21":[1,3,5,8,11],"210":8,"211":0,"2126":0,"2155":0,"21591":0,"218":[3,11],"2184":0,"219e":1,"22":[0,3,9,10,11],"222":0,"222046":0,"226":0,"229":1,"229399":0,"23":9,"235":1,"238":0,"2390":0,"24":[0,9],"243":0,"248563":0,"24866":4,"24987":4,"25":[0,5,8,9,11],"25000":0,"256":[0,9],"26":9,"261":0,"265":0,"266":0,"267":0,"27":[1,3,9,11],"270":0,"2700406":[],"271":0,"272":0,"274":0,"275":1,"27th":[0,3,10],"28":3,"280":0,"281":0,"282":0,"283":[0,1],"288":0,"289":0,"2971":0,"2nd":0,"2t":[1,8],"2tp":8,"2x5fcv":0,"3":[0,1,3,5,6,8,9,10,11],"30":[0,1,3,11],"300":[0,1,9],"305":0,"306":0,"312":0,"32":[0,6],"33":[0,5],"331":0,"333":0,"335":0,"337":0,"34":[0,3,11],"341":0,"346":1,"347":0,"350":0,"351":0,"357":1,"359":0,"361":0,"366":1,"372":0,"373":0,"376132":0,"3765":0,"3813":0,"3821":0,"383e":1,"387e":1,"392":0,"394":0,"399":0,"3f":[1,6],"3rd":0,"4":[0,1,3,4,5,8,11],"40":[0,3,4,11],"404333":0,"407":0,"41":[3,11],"412":0,"412e":1,"413":0,"414":0,"417":0,"41734":4,"42":[1,8],"421":0,"4259":0,"426e":1,"427":0,"430":0,"434":0,"435":1,"43676":4,"437":0,"44":0,"446":0,"45":[3,5,11],"452":0,"459":1,"4601":0,"461":0,"463":0,"465":0,"466":0,"470":0,"48":[3,11],"481":0,"48135":4,"486":0,"4898":0,"492":0,"496":0,"4960":1,"497":0,"5":[0,1,3,4,5,8,9,10,11],"50":[0,5,8,11],"500":[0,1,4,5,11],"5000":[1,5],"5005":4,"507":0,"508":0,"512":[9,11],"514":0,"515e":1,"530":0,"534":0,"535":0,"535e":1,"5379":4,"539":0,"541":1,"546":0,"5473":0,"54it":4,"55":5,"55it":4,"565":1,"569":0,"57":0,"573":0,"578":1,"583":0,"591":[3,11],"5f":4,"5fcv":11,"6":[0,1,3,5,8,10,11],"60":0,"600":1,"601":0,"604":[3,11],"606":0,"625":0,"627":0,"633e":1,"634":1,"64":[9,11],"640":0,"641":0,"650":0,"653":0,"654":1,"66":[1,11],"665":0,"667":0,"669":0,"67":5,"683":0,"688":0,"691":0,"694582":0,"7":[1,5,9],"70":0,"700":0,"701e":1,"711":0,"717":1,"725":1,"730":0,"735":0,"740e":1,"748":0,"75":[0,5,8],"762":0,"774":0,"778":0,"787":0,"794":0,"798":0,"8":[0,1,5,10,11],"8000":0,"830":0,"837":1,"858":1,"861":0,"87":[0,3,11],"8788":0,"889504":0,"8d2fhsgcvn0aaaaa":[],"9":[0,1,3,5,11],"90":[5,8],"901":0,"909":1,"914":1,"917":0,"919":0,"922":0,"923":0,"935":0,"936":0,"937":0,"945":1,"95":8,"9533":0,"958":0,"97":0,"979":0,"982":0,"99":8,"abstract":[3,9,11],"case":[0,1,3,4,5,8,11],"class":[0,1,3,4,5,6,8,9,10,11],"d\u00edez":[3,11],"default":[1,3,8,9,10],"do":[0,1,3,4,8,9],"final":[1,3,5],"float":[0,3,8,9,10,11],"function":[0,1,3,4,5,6,7,9,11],"g\u00e1llego":[0,3,11],"gonz\u00e1lez":[3,11],"import":[0,1,3,4,5,6],"int":[0,5,8,10,11],"long":[4,9],"new":[0,3,10,11],"p\u00e9rez":[0,3,11],"return":[0,1,3,4,5,8,9,10,11],"rodr\u0131":[3,11],"short":9,"static":[3,11],"true":[0,1,3,4,5,6,8,9,10,11],"try":4,"while":[3,5,8,9,11],A:[0,3,8,9,10,11],As:[3,4],By:[1,3,8],For:[0,1,5,6,8,11],If:[3,5,8,11],In:[0,1,2,3,4,5,6,9,11],It:[3,4,5],One:[0,1,3,11],That:[1,4],The:[0,1,2,4,5,6,8,9,10,11],Then:3,These:0,To:[5,10],_:5,__:[],__class__:5,__name__:5,_adjust:[],_ae_:[],_classify_:11,_error_name_:11,_fit_learner_:11,_kld_:[],_labelledcollection_:11,_learner_:11,_mean:[],_min_df_:10,_my:[],_nkld_:[],_posterior_probabilities_:11,_q_:[],_rae_:[],_svmperf_:[],ab:[],aboud:3,about:[0,5],abov:[0,3,5],absolut:[1,3,5,6,8],absolute_error:8,abstractmethod:3,acc:[1,3,5,6,8,11],acc_error:8,accept:3,access:[0,3],accommod:0,accord:[1,3,4,8,9],accordingli:5,accuraci:[1,5,8],accuracy_polici:11,achiev:[1,3,4,5],acm:[0,3,10,11],across:[0,1,4,5,6,8],action:[0,11],acut:0,ad:6,add:[3,4,8],add_word:10,addit:3,addition:[0,11],adjust:[3,6,11],adjusted_quantif:8,adjustedclassifyandcount:11,adopt:[3,4],advanc:[0,6],advantag:3,ae:[1,2,5,8],ae_:1,affect:8,afterward:11,again:5,against:5,aggreg:[1,4,5,6,7,8],aggregativeprobabilisticquantifi:[3,11],aggregativequantifi:[3,11],aggregg:11,aim:[4,5],al:[0,2,9],alaiz:[3,11],alegr:[3,11],alejandro:4,alia:[3,11],all:[0,1,2,3,5,8,11],allia:3,alloc:9,allow:[0,1,2,3,5,8,9,10,11],almost:3,along:[0,3,11],alreadi:[3,11],also:[0,1,2,3,5,6,9],altern:4,although:[3,4,5,11],alwai:[3,4,5],among:3,an:[0,1,2,3,4,5,6,8,9,11],analys:[5,6],analysi:[0,3,6,10,11],analyz:5,ani:[0,1,3,4,5,6,8,9,10,11],anoth:[0,1,3,5],anyon:0,api:6,app:8,appeal:1,appear:5,append:5,appli:[2,3,4,5,8,9,10],appropri:4,approxim:[1,5,9,11],ar:[0,1,3,4,5,8,9,10,11],archive_filenam:8,archive_path:8,arg:[8,10,11],args_i:8,argu:4,argument:[0,1,3,5],arifici:8,aris:1,around:1,arrai:[1,3,5,8,9,10],articl:[3,4,11],artifici:[0,1,3,4,5,6,8],artificial_prevalence_predict:8,artificial_prevalence_protocol:8,artificial_prevalence_report:8,artificial_prevalence_sampl:8,artificial_sampling_ev:[1,4],artificial_sampling_gener:[0,10],artificial_sampling_index_gener:10,artificial_sampling_predict:[1,5],artificial_sampling_report:1,arxiv:4,asarrai:1,asdataload:9,asonam:0,assess:4,assign:[3,8],associ:10,assum:[1,6,11],assumpt:[1,5,6],astyp:10,attempt:3,attribut:11,august:0,autom:[0,3,6],automat:[0,1],av:[3,11],avail:[0,1,2,3,5,6,9],averag:[1,3,8],avoid:1,axi:5,b:[0,10],balanc:[0,4],band:5,bar:8,barranquero:[2,3,9,11],base:[0,3,6,7,8,9],base_classifi:5,base_estim:3,base_quantifier_class:11,baseestim:[9,11],baselin:6,basequantifi:[3,8,11],basic:[5,11],batch:9,batch_siz:9,batch_size_test:9,been:[0,3,4,5,10,11],befor:[3,9,11],beforehand:8,behav:[3,5],being:[4,8],belief:1,belong:3,below:[0,2,3,5,10],best:[4,8,9,11],best_model:8,best_model_:4,best_params_:4,better:4,between:[4,5,6,8,9],beyond:5,bia:6,bias:5,bidirect:11,bin:[5,11],bin_bia:5,bin_diag:5,binar:[8,10],binari:[3,5,6,9,10,11],binary_bias_bin:[5,8],binary_bias_glob:[5,8],binary_diagon:[5,8],binary_quantifi:11,binaryquantifi:11,block:0,bool:[8,11],both:5,bound:8,box:5,breast:0,brief:1,broken:5,budg:1,budget:[1,4],build:11,bypass:11,c:[3,4,9,10,11],calibr:3,calibratedclassifi:3,calibratedclassifiercv:3,calibratedcv:11,call:[0,1,5,8,11],callabl:[0,8,10],can:[0,1,2,3,4,5,8],cancer:0,cannot:11,cardiotocographi:0,care:11,carri:3,casa_token:[],castano:[3,11],castro:[3,11],categor:3,categori:[1,8],cc:[3,5,11],ceil:8,center:5,chang:[0,1,3,11],character:[3,6],characteriz:[0,3,11],charg:[0,8],check:[3,4],checkpoint:[9,11],checkpointdir:11,checkpointnam:11,checkpointpath:9,choic:4,chosen:[4,8],cl:0,class2int:10,class_weight:4,classes_:[8,10,11],classif:[0,1,3,7,8,10,11],classif_posterior:[3,11],classif_predict:[3,11],classif_predictions_bin:11,classifi:[1,4,5,6,9,11],classifier_net:9,classifiermixin:9,classifyandcount:[3,11],classmethod:[0,10,11],classnam:10,clean_checkpoint:11,clean_checkpoint_dir:11,clear:5,clearer:1,clearli:5,clip:8,close:1,closer:1,cmc:0,cnn:3,cnnnet:[3,9],code:[0,3,4,5,9],coincid:[0,6],col:[0,10],collect:[0,8,9,10],collet:10,color:[5,8],colormap:8,column:[0,10],com:[],combin:[0,1,4,8],combinatio:8,combinations_budget:8,come:0,commandlin:[],common:11,commonli:6,compar:[5,11],comparison:5,compil:[2,3],complet:[3,5],compon:9,compress:0,comput:[1,3,5,8,11],computation:4,compute_fpr:11,compute_t:11,compute_tpr:11,concept:6,concur:11,conduct:0,confer:[0,3,10],configur:[4,8],consecut:9,consid:[3,5,9,10],consist:[0,4,5,9,10],constrain:[1,5],constructor:3,consult:[0,1],contain:[1,2,3,5,8,9,10,11],contanin:8,content:7,context:8,contrast:1,control:[1,4],conv_block:[],conv_lay:[],convert:[1,3,9],convolut:9,copi:10,cornel:[],correct:11,correspond:[5,10],cost:1,costli:4,could:[0,1,3,4,5,6,11],count:[4,5,6,10,11],count_:[],counter:10,countvector:10,covari:10,cover:[1,4,9],coz:[0,3,11],cpu:[1,9],creat:[0,6,8],create_if_not_exist:8,create_parent_dir:8,crisp:3,criteria:4,cross:[3,11],cs:[],csr_matrix:10,csv:10,ctg:0,cuda:[3,9,11],cumbersom:1,curios:5,current:[3,8,9,10],custom:[3,6,8],customarili:[3,4],cv:[3,4],cyan:5,d_:8,dat:[0,9],data:[1,3,4,5,6,7,8,9,11],data_hom:10,datafram:1,dataload:9,dataset:[1,3,4,5,6,7,8,9,11],dataset_nam:10,deal:0,decaesteck:[3,11],decai:9,decim:1,decis:[3,9],decision_funct:9,decomposit:9,dedic:1,deep:[3,8,11],def:[0,1,3,5,8],defin:[0,3,8,9,11],degre:4,del:[0,3,11],delai:8,deliv:3,dens:0,depend:[0,1,4,5,8],describ:[3,11],descript:0,design:4,desir:[0,1],despit:1,detail:[0,1,3,6,9,11],determin:[1,4,5],detriment:5,devel:10,develop:[4,6],deviat:[0,1,5],devic:[0,3,5,9,11],df:[1,10],df_replac:10,diabet:0,diagon:6,dict:[8,10,11],dictionari:[8,9],differ:[0,1,3,4,5,6,8,10],difficult:5,digit:0,dimens:[8,9,10],dimension:[8,9,10],directli:[0,1,3],directori:[2,9,10],discoveri:[3,11],discuss:5,disjoint:9,displai:[1,5],displaystyl:8,distanc:11,distant:[1,8],distribut:[0,3,5,8,11],diverg:[1,3,8],dl:[],doabl:0,doc_embed:11,doc_embedding_s:11,doc_posterior:11,document:[0,1,3,5,9,10,11],document_embed:9,doe:[0,2,3,8],doi:[],done:3,dot:5,down:5,download:[0,2,3],download_fil:8,download_file_if_not_exist:8,drawn:[0,1,4],drift:6,drop:[9,11],drop_p:9,dropout:9,ds:[3,11],ds_polici:11,ds_policy_get_posterior:11,dtype:1,dump:10,dure:[1,5],dynam:[3,9,11],e:[0,1,3,4,5,6,8,9,10,11],eacc:11,each:[0,1,3,4,5,8,9,10,11],earli:9,early_stop:11,earlystop:8,easili:[0,2,5,9],ecc:11,edu:[],eemq:11,effect:3,effici:3,ehdi:11,either:[1,3,8,11],element:3,elm:[3,11],em:11,emb:9,embed:[3,9],embed_s:9,embedding_s:9,empti:10,emq:[5,11],enabl:9,encod:10,end:[4,8],endeavour:6,enough:5,ensembl:[0,6,11],ensemblefactori:11,ensure_probabilist:11,entir:[0,3,4,5],environ:[1,3,4,5,8],ep:[1,8],epacc:11,epoch:[9,11],epsilon:[1,8,11],equal:[1,8],equidist:[0,8],equip:[3,5],err:8,err_drift:5,err_nam:8,error:[3,4,6,7,9],error_:[],error_by_drift:[5,8],error_funct:1,error_metr:[1,4,8],error_nam:[5,8,11],establish:8,estim:[1,3,5,6,8,9,11],estim_prev:[1,5,8],estim_preval:[3,6],esuli:[0,2,3,9,10,11],et:[0,2,9],etc:6,eval_budget:[4,8],evalu:[0,3,4,5,6,7,9],eventu:9,everi:[3,11],everyth:3,evinc:5,ex:[],exact:0,exactli:0,exampl:[0,1,3,4,5,8,9,11],exce:8,excel:0,except:[3,8],exemplifi:0,exhibit:[4,5],exist:8,expand_frame_repr:1,expect:6,expectationmaximizationquantifi:[3,11],experi:[1,2,3,4,5,8],explain:[1,5],explicitlossminim:11,explicitlossminimis:11,explor:[4,8],express:10,ext:2,extend:[2,3,11],extens:[0,2,5],extern:3,extract:[1,8],f1:[1,8,9],f1_error:8,f1e:[1,8],f:[0,1,3,4,5,6,10,11],f_1:8,fabrizio:4,facilit:6,fact:[3,5],factor:8,fals:[1,3,5,8,9,10,11],famili:3,familiar:3,far:9,fast:8,faster:[0,10],feat1:10,feat2:10,featn:10,featur:0,feature_extract:10,fetch:[0,6],fetch_review:[0,1,3,4,5,10],fetch_twitt:[0,3,6,10],fetch_ucidataset:[0,3,10],fetch_ucilabelledcollect:[0,10],ff_layer:11,fhe:0,file:[0,5,9,10],fin:0,find:[0,4],finish:4,first:[0,1,2,3,5,8,10,11],fit:[1,3,4,5,6,8,9,10,11],fit_learn:[3,11],fit_transform:10,fix:[1,4],float64:1,fn:8,fold:[3,11],folder:0,follow:[0,1,3,4,5,6],fomart:10,for_model_select:[0,10],form:0,format:[0,5,10],former:[2,11],forward:[9,11],found:[0,3,4,9],four:3,fp:[8,11],fpr:8,frac:8,framework:6,frequenc:0,from:[0,1,3,4,5,6,8,10,11],from_csv:10,from_nam:[1,8],from_spars:10,from_text:10,full:1,fulli:0,func:8,further:[0,1,3,9],fusion:[0,3,11],futur:3,g:[0,1,3,4,6,8,10,11],gao:[0,3,10,11],gasp:[0,10],gen:8,gen_data:5,gen_fn:8,gen_prevalence_predict:8,gener:[0,1,3,4,5,8,9,10,11],generation_func:8,german:0,get:[0,1,5,8,9],get_aggregative_estim:11,get_nprevpoints_approxim:[1,8],get_param:[3,8,9,11],get_probability_distribut:11,get_quapy_hom:8,github:[],given:[1,3,4,9,11],goe:4,good:[4,5],got:4,govern:1,gpu:9,grant:11,grid:[4,8,11],gridsearchcv:4,gridsearchq:[4,8],group:3,guarante:11,guez:[3,11],gzip:0,ha:[3,4,5,8,9],haberman:[0,3],handl:0,happen:[4,5],hard:3,harder:5,harmon:8,harri:0,hat:8,have:[0,1,2,3,4,5,10,11],hcr:[0,3,10],hdy:[6,11],held:[3,4,9],helling:11,hellingerdist:8,hellingerdistancei:[3,11],help:5,here:1,hidden:[5,9],hidden_s:9,hide:5,high:5,higher:[1,5],hlt:[],hold:6,home:10,hook:11,how:[0,1,3,4,5,11],howev:[0,4,5,11],hp:[0,3,4,10],html:[],http:[],hyper:[4,8,9],hyperparam:4,hyperparamet:[3,8,11],i:[0,1,3,4,5,8,9,10,11],id:[0,3,10],idf:0,ieee:0,ignor:[8,10,11],iid:[1,5,6],illustr:[3,4,5],imdb:[0,5,10],implement:[0,1,3,4,5,6,8,9,11],impos:4,improv:[3,9],includ:[0,1,3,5,6],inde:[3,4],independ:8,index:[0,3,6,9,10],indextransform:10,indic:[0,1,3,4,5,8,10,11],individu:[1,3],infer:0,inform:[0,1,3,4,8,10,11],infrequ:10,inherit:3,init:3,init_hidden:11,initi:[0,9],inplac:[1,3,10],input:[3,5,8,9],insight:5,inspir:3,instal:[0,3,6,9],instanc:[0,3,4,5,6,8,9,10,11],instanti:[0,1,3,4,9],instead:[1,3,4,11],integ:[3,9,10],integr:6,interest:[1,5,6,8],interestingli:5,interfac:[0,1],intern:[0,3,10],interpret:[5,6],interv:[1,5,8],introduc:1,invok:[0,1,3,8,10],involv:[2,5],io:[],ionospher:0,iri:0,irrespect:5,isaggreg:11,isbinari:[8,10,11],isometr:5,isprobabilist:11,isti:[],item:8,iter:[0,8,11],its:[3,4,8,9],itself:[3,11],j:[0,3,11],joachim:[3,9],job:[2,8],joblib:2,just:[1,3],k:[3,6,11],kei:8,kept:10,kernel:9,kernel_height:9,kfcv:[0,10,11],kindl:[0,1,3,5,10],kl:8,kld:[1,2,8,9],know:3,knowledg:[0,3,10,11],known:[0,3,4],kullback:[1,3,8],kwarg:[9,10,11],l1:11,label:[0,3,4,5,6,8,9,10,11],labelledcollect:[0,3,4,8,10,11],larg:4,largest:8,last:[1,3,5,9],lastli:3,latex:5,latinn:[3,11],latter:11,layer:[3,9],lead:1,learn:[1,2,3,4,6,8,9,11],learner:[3,4,9,11],least:[0,10],leav:10,legend:8,leibler:[1,3,8],length:9,less:[8,10],let:[1,3],level:11,leverag:3,like:[0,1,3,5,8,9],limit:[5,8],line:[1,3],linear:5,linear_model:[1,3,4,6,9],linearsvc:[3,5],linspac:5,list:[0,5,8,9,10],listedcolormap:8,literatur:[0,1,4,6],load:[0,3,8,10],loader:0,loader_func:[0,10],local:8,log:[8,10],logist:[1,3,9,11],logisticregress:[1,3,4,6,9],logscal:8,logspac:4,longer:8,longest:9,look:[0,1,3,5],loss:[6,9,11],low:[5,9],lower:[5,8],lower_is_bett:8,lowest:5,lowranklogisticregress:9,lr:[1,3,9,11],lstm:[3,9],lstm_class_nlay:9,lstm_hidden_s:11,lstm_nlayer:11,lstmnet:9,m:[3,8,11],machin:[1,4,6],macro:8,made:[0,2,11],mae:[1,4,6,8,9,11],mae_loss:11,main:5,maintain:[3,11],make:[0,1,3],mammograph:0,manag:[0,3,10],mani:[1,3,4,5,6,11],manner:0,manual:0,map:[1,9],map_parallel:8,margin:9,math:[],mathcal:8,matplotlib:[2,8],matric:[0,5,10],matrix:5,max:11,max_it:11,max_sample_s:11,maxim:6,maximum:[1,8,9],maximumlikelihoodprevalenceestim:11,md:[],mean:[0,1,3,4,5,6,8,9,10,11],mean_absolute_error:8,mean_relative_absolute_error:8,measur:[2,3,4,5,6,11],mediansweep2:11,mediansweep:11,member:3,memori:9,mention:3,merg:5,meta:[6,7,8],meth:[],method:[0,1,4,5,6,7,8],method_data:5,method_nam:[5,8],metric:[1,3,4,6,8],might:1,min_df:[1,3,4,5,10],min_po:11,mine:[0,3,11],minim:8,minimum:10,minimun:10,mining6:10,mixtur:3,mkld:[1,8,11],mnkld:[1,8,11],mock:9,modal:4,model:[0,1,5,6,8,9,11],model_select:[4,7],modifi:[3,8],modul:[0,1,3,5,6,7],moment:[0,3],more:[3,5,8],moreo:[0,3,4,10],most:[0,3,5,6,11],movi:0,mrae:[1,6,8,9,11],ms2:11,ms:11,mse:[1,3,6,8,11],msg:11,multiprocess:8,multivari:[3,9,11],must:3,my:[],my_arrai:8,my_custom_load:0,my_data:0,mycustomloss:3,n:[0,1,8,9],n_bin:[5,8],n_class:[1,3,8,9,10,11],n_compon:9,n_dimens:9,n_epoch:11,n_featur:9,n_instanc:9,n_job:[1,3,4,8,10,11],n_preval:[0,8,10],n_prevpoint:[1,4,5,8],n_repeat:[1,8],n_repetit:[1,4,5,8],n_sampl:[8,9],name:[5,8,9,10],nativ:6,natur:[1,8],natural_prevalence_predict:8,natural_prevalence_protocol:8,natural_prevalence_report:8,natural_sampling_gener:10,natural_sampling_index_gener:10,nbin:[5,8],ndarrai:[1,3,8,10,11],necessarili:11,need:[0,3,11],neg:[0,5,8],nest:[],net:9,network:[0,9,10,11],neural:[0,7,8,10],neuralclassifiertrain:[3,9],neutral:0,next:[4,8,9],nfold:[0,10],nkld:[1,2,6,8,9],nn:[9,11],nogap:10,non:[3,11],non_aggreg:[7,8],none:[1,4,8,9,10,11],nonetheless:4,nor:3,normal:[0,1,3,8,11],normalize_preval:8,note:[1,3,4,5],now:5,nowadai:3,np:[1,3,4,5,8],npp:8,nprevpoint:8,nrepeat:[0,10],num_prevalence_combin:[1,8],number:[0,1,3,5,8,9,10,11],numer:[0,1,3,6,10],numpi:[2,4,8,9,11],o_l6x_pcf09mdetq4tu7jk98mxfbgsxp9zso14jkuiyudgfg0:[],object:[0,8,9,10,11],observ:1,obtain:[1,4],occur:[5,10],occurr:10,octob:[0,3],off:9,offer:[3,6],older:2,omd:[0,10],ommit:1,onc:[1,3,5,8],one:[0,1,3,4,5,8,11],ones:[1,3,5,8,10],onevsal:[3,11],onli:[0,3,5,8,9,11],open:[0,6],oper:3,opt:4,optim:[2,3,4,8,9,11],optimize_threshold:11,option:[0,1,3,5,8,10,11],order:[0,2,3,5,8,10,11],order_bi:11,org:[],orient:[3,6,8,11],origin:[0,3,10,11],os:0,other:[1,3,5,6,8],otherwis:[0,3,11],our:[],out:[3,4,5,9],outcom:5,outer:8,output:[0,1,3,4,9,11],over:[3,4],overal:1,overestim:5,overrid:3,overridden:[3,11],own:4,p:[0,3,8,11],p_hat:8,pacc:[1,3,5,11],packag:[0,2,3,6,7],pad:9,pad_length:9,padding_length:9,page:[0,2,6],pageblock:0,pair:[0,8],panda:[1,2],paper:[0,3,11],parallel:[1,3,8],param:[4,8,9,10,11],param_grid:[4,8,11],param_mod_sel:11,param_model_sel:11,paramet:[1,3,4,8,9,10,11],part:[3,10],particular:[0,1,3],particularli:1,pass:[0,1,5,9,11],past:1,patch:[2,3,9],path:[0,3,5,8,9,10],patienc:[8,9,11],pattern:[3,11],pca:[],pcalr:[],pcc:[3,4,5,11],pd:1,pdf:5,peopl:[],perf:[6,9],perform:[1,3,4,5,6,8,9,11],phonem:0,pick:4,pickl:[3,8,10],pickle_path:8,pickled_resourc:8,pii:[],pip:2,pipelin:[],pkl:8,plai:0,plan:3,pleas:3,plot:[6,7],png:5,point:[0,1,3,8],polici:[3,11],popular:6,portion:4,pos_class:[8,10],posit:[0,3,5,8],possibl:[1,3,8],posterior:[3,8,9,11],posterior_prob:[3,11],postpon:3,potter:0,pp:[0,3],practic:[0,4],pre:[0,3],prec:[0,8],precis:[0,1,8],preclassifi:3,predict:[3,4,5,8,9,11],predict_proba:[3,9,11],predictor:1,prepare_svmperf:[2,3],preprint:4,preprocess:[0,1,3,7,8],present:[0,3,10],preserv:[1,5],pretti:5,prev:[0,1,8,10],prevail:3,preval:[0,1,3,4,5,6,8,10,11],prevalence_estim:8,prevalence_from_label:8,prevalence_from_prob:8,prevalence_linspac:8,prevel:11,previou:3,previous:11,prevs_estim:11,prevs_hat:[1,8],princip:9,print:[0,1,3,4,6,9],prior:[1,3,4,5,6],priori:[3,11],probabilist:[3,11],probabilisticadjustedclassifyandcount:11,probabilisticclassifyandcount:11,probabl:[1,3,4,5,6,9,11],problem:[0,3,5,11],procedur:[3,6,11],proceed:[0,3,10],process:[3,4,8],processor:3,procol:1,produc:[0,1,5,8],product:3,progress:8,properli:0,properti:[3,8,9,10,11],proport:[3,4,8,9,11],propos:[2,3,11],protocl:8,protocol:[0,3,4,5,6,8],provid:[0,3,5,6],ptecondestim:11,ptr:[3,11],ptr_polici:11,purpos:[0,11],python:[0,6],pytorch:2,q:[0,2,3,8,9],qacc:9,qdrop_p:11,qf1:9,qgm:9,qp:[0,1,3,4,5,6,8],quanet:[2,6,9,11],quanetmodul:11,quanettrain:11,quantif:[0,1,6,8,9,10,11],quantifi:[3,4,5,6,8,11],quantification_error:8,quantiti:8,quapi:[0,1,2,3,4,5],quapy_data:0,quay_data:10,quevedo:[0,3,11],quick:[],r:[0,3,11],rac:[],rae:[1,2,8],rais:[3,8],rand:8,random:[1,3,4,5,8],random_se:[1,8],random_st:10,randomli:0,rang:[0,5],rank:[3,9],rare:10,rate:[3,9],rather:[1,4],raw:10,rb:0,re:[3,4,10],read:10,reader:[7,8],readm:[],real:[9,10],reason:[3,5,6],recal:8,receiv:[0,3,5],recip:11,recognit:[3,11],recommend:[1,5],recurr:[0,3,10],red:0,red_siz:[3,11],reduc:[0,10],reduce_column:[0,10],refer:[9,10],refit:[4,8],regard:4,regist:11,regress:9,regressor:[1,3,11],reindex_label:10,reiniti:9,rel:[1,3,8],relative_absolute_error:8,reli:[1,3],reliabl:[3,11],rememb:5,remov:10,repeat:[8,10],repetit:8,repl:10,replac:[0,3,10],replic:[1,4,8],report:1,repositori:0,repr_siz:9,repres:[1,3,5,10,11],represent:[0,3,9],request:[0,8,11],requir:[0,1,3,6,9],reset_net_param:9,resourc:8,respect:[0,1,5,8,11],respond:3,rest:[10,11],result:[1,2,3,4,5,6,11],retain:[0,3,9],retrain:4,return_constrained_dim:8,reus:[0,3,8],review:[5,6,10],reviews_sentiment_dataset:0,rewrit:5,right:4,role:0,root:6,roughli:0,routin:8,row:10,run:[0,1,2,3,4,5,8,11],s003132031400291x:[],s:[0,1,3,4,5,8,9,10],saeren:[3,11],sai:11,said:3,same:[0,3,5,10],sampl:[0,1,3,4,5,6,8,9,10,11],sample_s:[0,1,3,4,5,8,10,11],sampling_from_index:[0,10],sampling_index:[0,10],sander:[0,10],save:[5,8],save_or_show:8,save_text_fil:8,savepath:[5,8],scall:10,scenario:[1,3,4,5,6],scienc:[3,11],sciencedirect:[],scikit:[2,3,4],scipi:[2,10],score:[0,1,4,9,10],script:[1,2,3,6],se:[1,8],search:[3,4,6,8,11],sebastiani:[0,3,4,10,11],second:[0,1,3,5,8],section:4,see:[0,1,2,3,4,5,6,8,9],seed:[1,4,8],seem:3,seemingli:5,seen:5,select:[0,3,6,8,11],selector:3,self:[3,9,10,11],semeion:0,semev:0,semeval13:[0,10],semeval14:[0,10],semeval15:[0,10],semeval16:[0,6,10],sentenc:10,sentiment:[3,6,10,11],separ:[8,10],seri:0,serv:3,set:[0,1,3,4,5,6,8,9,10,11],set_opt:1,set_param:[3,8,9,11],set_siz:[],sever:0,sh:[2,3],shape:[5,8,9],share:[0,10],shift:[1,4,6,8],shorter:9,shoud:3,should:[0,1,3,4,5,6,9,10,11],show:[0,1,3,4,5,8,9,10],show_std:[5,8],showcas:5,shown:[1,5],shuffl:[9,10],signific:1,silent:[8,11],similar:11,simpl:[0,3,5,11],simplest:3,simplex:[0,8],simpli:[1,2,3,4,5,6,8,11],sinc:[0,1,3,5,8,11],singl:[1,3,6,11],size:[0,1,3,8,9,10,11],sklearn:[1,3,4,5,6,9,10,11],sld:3,slice:8,smooth:[1,8],smooth_limits_epsilon:8,so:[0,1,3,5,8,9,11],social:[0,3,10,11],soft:3,softwar:0,solid:5,solv:4,solve_adjust:11,some:[0,1,3,5],some_arrai:8,sometim:1,sonar:0,sourc:[2,3,6,9],sout:11,space:[0,4,9],spambas:0,spars:[0,10],special:[0,5,10],specif:[3,4],specifi:[0,1,3,5,8,9,10,11],spectf:0,spectrum:[0,1,4,5],speed:3,split:[0,3,4,5,9,10,11],split_stratifi:10,splitstratifi:10,spmatrix:10,squar:[1,3,8],sst:[0,10],stabil:1,stand:8,standard:[0,1,5,10],start:4,stat:10,state:8,statist:[0,1,11],stats_siz:11,std:9,stdout:8,step:[5,8],stop:9,store:[0,9,10],str:[0,8,10],strategi:[3,4],stratifi:[0,3],stride:9,string:[1,8,10],strongli:[4,5],strprev:[0,1,8],structur:3,studi:[0,3,11],subclass:11,subinterv:5,sublinear_tf:10,submit:0,submodul:7,subobject:[],suboptim:4,subpackag:7,subsequ:[10,11],subtract:[0,8],subtyp:10,suffic:5,suffici:11,sum:11,sum_:8,summar:0,supervis:[4,6],support:[3,6,9],surpass:1,svm:[3,5,6,9],svm_light:[],svm_perf:[],svm_perf_classifi:9,svm_perf_learn:9,svm_perf_quantif:[2,3],svmae:[3,11],svmkld:[3,11],svmnkld:[3,11],svmperf:[2,3,7,8],svmperf_bas:[9,11],svmperf_hom:3,svmq:[3,11],svmrae:[3,11],syntax:5,system:4,t50:11,t:[0,1,3,8],take:[0,3,5,8,11],taken:[3,8,9],target:[3,5,6,8,9,11],task:[3,4,11],temp_se:8,tempor:8,tend:5,tendenc:5,tensor:9,term:[0,1,3,4,5,6,8,9,10,11],test:[0,1,3,4,5,6,8,9,10,11],test_bas:[],test_dataset:[],test_method:[],test_path:[0,10],test_sampl:8,test_split:10,text2tfidf:[0,1,3,10],text:[0,3,8,9,10,11],textclassifiernet:9,textual:[0,6,10],tf:[0,10],tfidf:[0,4,5,10],tfidfvector:10,than:[1,4,5,8,9,10],thei:[0,3],them:[0,3,11],theoret:4,thereaft:1,thi:[0,1,2,3,4,5,6,8,9,11],thing:3,third:[1,5],thorsten:9,those:[1,3,4,5,8,9],though:3,three:[0,5],thresholdoptim:11,through:[3,8],thu:[3,4,5,8,11],tictacto:0,time:[0,1,3,8,10],timeout:8,timeouterror:8,timer:8,titl:8,tj:[],tn:[8,11],token:[0,9,10],tool:[1,6],top:[3,11],torch:[3,9,11],torchdataset:9,toward:5,tp:[8,11],tpr:8,tqdm:2,tr_iter_per_poch:11,tr_prev:[5,8,11],trade:9,tradition:1,train:[0,1,3,4,5,6,8,9,10,11],train_path:[0,10],train_prev:[5,8],train_prop:10,train_siz:10,train_val_split:11,trainer:9,training_help:11,training_preval:5,training_s:5,transact:[3,11],transform:[0,9,10],transfus:0,trivial:3,true_prev:[1,5,8],true_preval:6,truncatedsvd:9,turn:4,tweet:[0,3,10,11],twitter:[6,10],twitter_sentiment_datasets_test:0,twitter_sentiment_datasets_train:0,two:[0,1,3,4,5,8],type:[0,3],typic:[1,4,5,8,9],uci:6,unabl:0,unadjust:5,unalt:9,unbias:5,uncompress:0,under:1,underestim:5,underlin:8,unfortun:5,unifi:0,uniform_prevalence_sampl:8,uniform_sampl:10,uniform_sampling_index:10,uniform_simplex_sampl:8,uniformli:8,union:[8,11],uniqu:10,unit:0,unix:0,unk:10,unless:11,unlik:[1,4],unus:[8,9,11],up:[3,4,8,9,11],updat:[],url:8,us:[0,1,3,4,5,6,8,9,10,11],user:[0,1,5],utf:10,util:[7,9],v:[3,11],va_iter_per_poch:11,val:[0,10],val_split:[3,4,8,9,11],valid:[0,1,3,4,5,8,9,10,11],valid_loss:[3,9],valid_polici:11,valu:[0,1,3,8,9,10,11],variabl:[1,3,5,8],varianc:[0,5],variant:[5,6,11],varieti:4,variou:[1,5],vector:[0,8,9,10],verbos:[0,1,4,8,9,10,11],veri:[3,5],versatil:6,version:[2,9],vertical_xtick:8,via:[0,2,3,11],view:5,visual:[5,6],vocab_s:9,vocabulari:[9,10],vocabulary_s:[3,9,10],vs:3,w:[0,3,10,11],wa:[0,3,5,10,11],wai:[1,11],wait:9,want:[3,4],warn:10,wb:[0,10],wdbc:0,we:[0,1,3,4,5,6],weight:[9,10],weight_decai:9,well:[0,3,4,5],were:0,what:3,when:[0,1,3,4,5,8,9],whenev:[5,8],where:[3,5,8,9,10,11],wherebi:4,whether:[8,9,10,11],which:[0,1,3,4,5,8,9,10,11],white:0,whole:[0,1,3,4,8],why:3,wide:5,wiki:[0,3],wine:0,within:[8,11],without:[1,3,8],word:[1,3,6,9,10],work:[1,3,4,5],worker:1,wors:[4,5],would:[0,1,3,5,6,8,11],wrapper:[8,9],written:6,www:[],x:[5,8,9,10,11],xavier:9,xavier_uniform:9,xlrd:[0,2],xy:10,y:[5,8,9,10,11],y_:11,y_pred:8,y_true:8,ye:10,yeast:0,yield:[5,8],yin:[],you:[2,3],your:3,z:0,zero:[0,8],zfthyovrzwxmgfzylqw_y8cagg:[],zip:[0,5]},titles:["Datasets","Evaluation","Installation","Quantification Methods","Model Selection","Plotting","Welcome to QuaPy\u2019s documentation!","quapy","quapy package","quapy.classification package","quapy.data package","quapy.method package"],titleterms:{"function":8,A:6,The:3,ad:0,aggreg:[3,11],base:[10,11],bia:5,classif:[4,9],classifi:3,content:[6,8,9,10,11],count:3,custom:0,data:[0,10],dataset:[0,10],diagon:5,distanc:3,document:6,drift:5,emq:3,ensembl:3,error:[1,5,8],evalu:[1,8],ex:[],exampl:6,expect:3,explicit:3,featur:6,get:[],hdy:3,helling:3,indic:6,instal:2,introduct:6,issu:0,learn:0,loss:[2,3,4],machin:0,maxim:3,measur:1,meta:[3,11],method:[3,9,11],minim:3,model:[3,4],model_select:8,modul:[8,9,10,11],network:3,neural:[3,9,11],non_aggreg:11,orient:[2,4],packag:[8,9,10,11],perf:2,plot:[5,8],preprocess:10,process:0,protocol:1,quanet:3,quantif:[2,3,4,5],quapi:[6,7,8,9,10,11],quick:6,reader:10,readm:[],requir:2,review:0,s:6,select:4,sentiment:0,start:[],submodul:[8,9,10,11],subpackag:8,svm:2,svmperf:9,tabl:6,target:4,test:[],test_bas:[],test_dataset:[],test_method:[],titl:[],twitter:0,uci:0,util:8,variant:3,welcom:6,y:3}})
\ No newline at end of file
diff --git a/quapy/error.py b/quapy/error.py
index 93a9416..3375470 100644
--- a/quapy/error.py
+++ b/quapy/error.py
@@ -1,8 +1,14 @@
+import quapy as qp
import numpy as np
from sklearn.metrics import f1_score
def from_name(err_name):
+ """Gets an error function from its name. E.g., `from_name("mae")` will return function :meth:`quapy.error.mae`
+
+ :param err_name: string, the error name
+ :return: a callable implementing the requested error
+ """
assert err_name in ERROR_NAMES, f'unknown error {err_name}'
callable_error = globals()[err_name]
if err_name in QUANTIFICATION_ERROR_SMOOTH_NAMES:
@@ -14,35 +20,105 @@ def from_name(err_name):
def f1e(y_true, y_pred):
+ """F1 error: simply computes the error in terms of macro :math:`F_1`, i.e., :math:`1-F_1^M`,
+ where :math:`F_1` is the harmonic mean of precision and recall, defined as :math:`\\frac{2tp}{2tp+fp+fn}`,
+ with `tp`, `fp`, and `fn` standing for true positives, false positives, and false negatives, respectively.
+ `Macro` averaging means the :math:`F_1` is computed for each category independently, and then averaged.
+
+ :param y_true: array-like of true labels
+ :param y_pred: array-like of predicted labels
+ :return: :math:`1-F_1^M`
+ """
return 1. - f1_score(y_true, y_pred, average='macro')
def acce(y_true, y_pred):
+ """Computes the error in terms of 1-accuracy. The accuracy is computed as :math:`\\frac{tp+tn}{tp+fp+fn+tn}`, with
+ `tp`, `fp`, `fn`, and `tn` standing for true positives, false positives, false negatives, and true negatives,
+ respectively
+
+ :param y_true: array-like of true labels
+ :param y_pred: array-like of predicted labels
+ :return: 1-accuracy
+ """
return 1. - (y_true == y_pred).mean()
def mae(prevs, prevs_hat):
+ """Computes the mean absolute error (see :meth:`quapy.error.ae`) across the sample pairs.
+
+ :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values
+ :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted prevalence values
+ :return: mean absolute error
+ """
return ae(prevs, prevs_hat).mean()
-def ae(p, p_hat):
- assert p.shape == p_hat.shape, f'wrong shape {p.shape} vs. {p_hat.shape}'
- return abs(p_hat-p).mean(axis=-1)
+def ae(prevs, prevs_hat):
+ """Computes the absolute error between the two prevalence vectors.
+ Absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}` is computed as
+ :math:`AE(p,\\hat{p})=\\frac{1}{|\\mathcal{Y}|}\\sum_{y\in \mathcal{Y}}|\\hat{p}(y)-p(y)|`,
+ where :math:`\\mathcal{Y}` are the classes of interest.
+
+ :param prevs: array-like of shape `(n_classes,)` with the true prevalence values
+ :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values
+ :return: absolute error
+ """
+ assert prevs.shape == prevs_hat.shape, f'wrong shape {prevs.shape} vs. {prevs_hat.shape}'
+ return abs(prevs_hat - prevs).mean(axis=-1)
def mse(prevs, prevs_hat):
+ """Computes the mean squared error (see :meth:`quapy.error.se`) across the sample pairs.
+
+ :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values
+ :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted prevalence values
+ :return: mean squared error
+ """
return se(prevs, prevs_hat).mean()
def se(p, p_hat):
+ """Computes the squared error between the two prevalence vectors.
+ Squared error between two prevalence vectors :math:`p` and :math:`\\hat{p}` is computed as
+ :math:`SE(p,\\hat{p})=\\frac{1}{|\\mathcal{Y}|}\\sum_{y\in \mathcal{Y}}(\\hat{p}(y)-p(y))^2`, where
+ :math:`\\mathcal{Y}` are the classes of interest.
+
+ :param prevs: array-like of shape `(n_classes,)` with the true prevalence values
+ :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values
+ :return: absolute error
+ """
return ((p_hat-p)**2).mean(axis=-1)
def mkld(prevs, prevs_hat, eps=None):
+ """Computes the mean Kullback-Leibler divergence (see :meth:`quapy.error.kld`) across the sample pairs.
+ The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).
+
+ :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values
+ :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted prevalence values
+ :param eps: smoothing factor. KLD is not defined in cases in which the distributions contain zeros; `eps`
+ is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size. If `eps=None`, the sample size
+ will be taken from the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand).
+ :return: mean Kullback-Leibler distribution
+ """
return kld(prevs, prevs_hat, eps).mean()
def kld(p, p_hat, eps=None):
+ """Computes the Kullback-Leibler divergence between the two prevalence distributions.
+ Kullback-Leibler divergence between two prevalence distributions :math:`p` and :math:`\\hat{p}` is computed as
+ :math:`KLD(p,\\hat{p})=D_{KL}(p||\\hat{p})=\\sum_{y\\in \\mathcal{Y}} p(y)\\log\\frac{p(y)}{\\hat{p}(y)}`, where
+ :math:`\\mathcal{Y}` are the classes of interest.
+ The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).
+
+ :param prevs: array-like of shape `(n_classes,)` with the true prevalence values
+ :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values
+ :param eps: smoothing factor. KLD is not defined in cases in which the distributions contain zeros; `eps`
+ is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size. If `eps=None`, the sample size
+ will be taken from the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand).
+ :return: Kullback-Leibler divergence between the two distributions
+ """
eps = __check_eps(eps)
sp = p+eps
sp_hat = p_hat + eps
@@ -50,28 +126,81 @@ def kld(p, p_hat, eps=None):
def mnkld(prevs, prevs_hat, eps=None):
+ """Computes the mean Normalized Kullback-Leibler divergence (see :meth:`quapy.error.nkld`) across the sample pairs.
+ The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).
+
+ :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values
+ :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted prevalence values
+ :param eps: smoothing factor. NKLD is not defined in cases in which the distributions contain zeros; `eps`
+ is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size. If `eps=None`, the sample size
+ will be taken from the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand).
+ :return: mean Normalized Kullback-Leibler distribution
+ """
return nkld(prevs, prevs_hat, eps).mean()
def nkld(p, p_hat, eps=None):
+ """Computes the Normalized Kullback-Leibler divergence between the two prevalence distributions.
+ Normalized Kullback-Leibler divergence between two prevalence distributions :math:`p` and :math:`\\hat{p}`
+ is computed as :math:`NKLD(p,\\hat{p}) = 2\\frac{e^{KLD(p,\\hat{p})}}{e^{KLD(p,\\hat{p})}+1}-1`, where
+ :math:`\\mathcal{Y}` are the classes of interest.
+ The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).
+
+ :param prevs: array-like of shape `(n_classes,)` with the true prevalence values
+ :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values
+ :param eps: smoothing factor. NKLD is not defined in cases in which the distributions contain zeros; `eps`
+ is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size. If `eps=None`, the sample size
+ will be taken from the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand).
+ :return: Normalized Kullback-Leibler divergence between the two distributions
+ """
ekld = np.exp(kld(p, p_hat, eps))
return 2. * ekld / (1 + ekld) - 1.
def mrae(p, p_hat, eps=None):
+ """Computes the mean relative absolute error (see :meth:`quapy.error.rae`) across the sample pairs.
+ The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).
+
+ :param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values
+ :param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted prevalence values
+ :param eps: smoothing factor. `mrae` is not defined in cases in which the true distribution contains zeros; `eps`
+ is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size. If `eps=None`, the sample size
+ will be taken from the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand).
+ :return: mean relative absolute error
+ """
return rae(p, p_hat, eps).mean()
def rae(p, p_hat, eps=None):
+ """Computes the absolute relative error between the two prevalence vectors.
+ Relative absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}` is computed as
+ :math:`RAE(p,\\hat{p})=\\frac{1}{|\\mathcal{Y}|}\\sum_{y\in \mathcal{Y}}\\frac{|\\hat{p}(y)-p(y)|}{p(y)}`,
+ where :math:`\\mathcal{Y}` are the classes of interest.
+ The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).
+
+ :param prevs: array-like of shape `(n_classes,)` with the true prevalence values
+ :param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values
+ :param eps: smoothing factor. `rae` is not defined in cases in which the true distribution contains zeros; `eps`
+ is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size. If `eps=None`, the sample size
+ will be taken from the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand).
+ :return: relative absolute error
+ """
eps = __check_eps(eps)
p = smooth(p, eps)
p_hat = smooth(p_hat, eps)
return (abs(p-p_hat)/p).mean(axis=-1)
-def smooth(p, eps):
- n_classes = p.shape[-1]
- return (p+eps)/(eps*n_classes + 1)
+def smooth(prevs, eps):
+ """ Smooths a prevalence distribution with :math:`\epsilon` (`eps`) as:
+ :math:`\\underline{p}(y)=\\frac{\\epsilon+p(y)}{\\epsilon|\\mathcal{Y}|+\\displaystyle\\sum_{y\\in \\mathcal{Y}}p(y)}`
+
+ :param prevs: array-like of shape `(n_classes,)` with the true prevalence values
+ :param eps: smoothing factor
+ :return: array-like of shape `(n_classes,)` with the smoothed distribution
+ """
+ n_classes = prevs.shape[-1]
+ return (prevs + eps) / (eps * n_classes + 1)
def __check_eps(eps=None):