diff --git a/examples/model_selection.py b/examples/model_selection.py index 3145005..485acd8 100644 --- a/examples/model_selection.py +++ b/examples/model_selection.py @@ -1,7 +1,7 @@ import quapy as qp from method.kdey import KDEyML from quapy.method.non_aggregative import DMx -from quapy.protocol import APP +from quapy.protocol import APP, UPP from quapy.method.aggregative import DMy from sklearn.linear_model import LogisticRegression from examples.comparing_gridsearch import OLD_GridSearchQ @@ -18,7 +18,7 @@ qp.environ['SAMPLE_SIZE'] = 100 qp.environ['N_JOBS'] = -1 # training, test = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5).train_test -training, test = qp.datasets.fetch_UCIMulticlassDataset('dry-bean').train_test +training, test = qp.datasets.fetch_UCIMulticlassDataset('letter').train_test with qp.util.temp_seed(0): @@ -30,7 +30,7 @@ with qp.util.temp_seed(0): # values in the entire range of values from a grid (e.g., [0, 0.1, 0.2, ..., 1]). # We devote 30% of the dataset for this exploration. training, validation = training.split_stratified(train_prop=0.7) - protocol = APP(validation) + protocol = UPP(validation) # We will explore a classification-dependent hyper-parameter (e.g., the 'C' # hyper-parameter of LogisticRegression) and a quantification-dependent hyper-parameter @@ -53,7 +53,7 @@ with qp.util.temp_seed(0): protocol=protocol, error='mae', # the error to optimize is the MAE (a quantification-oriented loss) refit=False, # retrain on the whole labelled set once done - raise_errors=False, + # raise_errors=False, verbose=True # show information as the process goes on ).fit(training) @@ -64,7 +64,7 @@ model = model.best_model_ # evaluation in terms of MAE # we use the same evaluation protocol (APP) on the test set -mae_score = qp.evaluation.evaluate(model, protocol=APP(test), error_metric='mae') +mae_score = qp.evaluation.evaluate(model, protocol=UPP(test), error_metric='mae') print(f'MAE={mae_score:.5f}') print(f'model selection took {tend-tinit:.1f}s')