diff --git a/distribution_matching/figures/histograms_density_plot.py b/distribution_matching/figures/histograms_density_plot.py new file mode 100644 index 0000000..f4d59bd --- /dev/null +++ b/distribution_matching/figures/histograms_density_plot.py @@ -0,0 +1,73 @@ + +import math +import numpy as np +from sklearn.linear_model import LogisticRegression +from sklearn.model_selection import train_test_split, cross_val_predict +from sklearn.neighbors import KernelDensity +import matplotlib.pyplot as plt +import numpy as np + +from data import LabelledCollection + +scale = 100 + + +import quapy as qp + +data = qp.datasets.fetch_twitter('wb', min_df=3, pickle=True, for_model_selection=False) + +X, y = data.training.Xy + +cls = LogisticRegression(C=0.0001, random_state=0) + + +posteriors = cross_val_predict(cls, X=X, y=y, method='predict_proba', n_jobs=-1, cv=3) + +cls.fit(X, y) + +Xte, yte = data.test.Xy + +post_c1 = posteriors[y==0] +post_c2 = posteriors[y==1] +post_c3 = posteriors[y==2] + + +print(len(post_c1)) +print(len(post_c2)) +print(len(post_c3)) + +post_test = cls.predict_proba(Xte) + +alpha = qp.functional.prevalence_from_labels(yte, classes=[0, 1, 2]) + + +nbins = 20 + +plt.rcParams.update({'font.size': 7}) + +fig = plt.figure() +positions = np.asarray([2,1,0]) +colors = ['r', 'g', 'b'] + +for i, post_set in enumerate([post_c1, post_c2, post_c3, post_test]): + ax = fig.add_subplot(141+i, projection='3d') + for post, c, z in zip(post_set.T, colors, positions): + + hist, bins = np.histogram(post, bins=nbins, density=True) + xs = (bins[:-1] + bins[1:])/2 + + ax.bar(xs, hist, width=1/nbins, zs=z, zdir='y', color=c, ec=c, alpha=0.6) + + ax.yaxis.set_ticks(positions) + ax.yaxis.set_ticklabels(['$y=1$', '$y=2$', '$y=3$']) + ax.xaxis.set_ticks([]) + ax.xaxis.set_ticklabels([], minor=True) + ax.zaxis.set_ticks([]) + ax.zaxis.set_ticklabels([], minor=True) + + +#plt.figure(figsize=(10,6)) +#plt.show() +plt.savefig('./histograms.pdf') + + diff --git a/distribution_matching/figures/simplex_density_plot.py b/distribution_matching/figures/simplex_density_plot.py index dc6f5ef..4b8044a 100644 --- a/distribution_matching/figures/simplex_density_plot.py +++ b/distribution_matching/figures/simplex_density_plot.py @@ -8,7 +8,7 @@ import plotly.figure_factory as ff from data import LabelledCollection -scale = 200 +scale = 10 # con ternary (una lib de matplotlib) salen bien pero no puedo crear contornos, o no se @@ -54,7 +54,8 @@ def plot_3class_problem(post_c1, post_c2, post_c3, post_test, alpha, bandwidth): post_c3 = np.flip(post_c3, axis=1) post_test = np.flip(post_test, axis=1) - fig = ternary.plt.figure(figsize=(26, 3)) + size_=10 + fig = ternary.plt.figure(figsize=(4*size_, 1*size_)) fig.tight_layout() ax1 = fig.add_subplot(1, 4, 1) divider = make_axes_locatable(ax1) @@ -81,9 +82,9 @@ def plot_3class_problem(post_c1, post_c2, post_c3, post_test, alpha, bandwidth): return np.exp(kde([p])).item() return d - plot_simplex_(ax1, density(kde1.score_samples), title='$f_1(\mathbf{x})=p(s(\mathbf{x})|y=1)$') - plot_simplex_(ax2, density(kde2.score_samples), title='$f_2(\mathbf{x})=p(s(\mathbf{x})|y=2)$') - plot_simplex_(ax3, density(kde3.score_samples), title='$f_3(\mathbf{x})=p(s(\mathbf{x})|y=3)$') + plot_simplex_(ax1, density(kde1.score_samples), title='$p_1$') + plot_simplex_(ax2, density(kde2.score_samples), title='$p_2$') + plot_simplex_(ax3, density(kde3.score_samples), title='$p_3$') #plot_simplex(ax1, post_c1, np.exp(kde1.score_samples(post_c1)), title='$f_1(\mathbf{x})=p(s(\mathbf{x})|y=1)$') #, savepath='figure/y1.png') #plot_simplex(ax2, post_c2, np.exp(kde2.score_samples(post_c2)), title='$f_2(\mathbf{x})=p(s(\mathbf{x})|y=2)$') #, savepath='figure/y2.png') #plot_simplex(ax3, post_c3, np.exp(kde3.score_samples(post_c3)), title='$f_3(\mathbf{x})=p(s(\mathbf{x})|y=3)$') #, savepath='figure/y3.png') @@ -100,7 +101,7 @@ def plot_3class_problem(post_c1, post_c2, post_c3, post_test, alpha, bandwidth): return total_density return m - title = '$\sum_{i \in \mathcal{Y}} \\alpha_i f_i(\mathbf{x})$' + title = '$p_{\mathbf{\\alpha}} = \sum_{i \in n} \\alpha_i p_i$' plot_simplex_(ax4, mixture_(alpha, [kde1, kde2, kde3]), title=title, points=post_test) #mixture(alpha, [kde1, kde2, kde3]) @@ -109,7 +110,8 @@ def plot_3class_problem(post_c1, post_c2, post_c3, post_test, alpha, bandwidth): #test_scores = sum(alphai*np.exp(kdei.score_samples(post_test)) for alphai, kdei in zip(alpha, [kde1,kde2,kde3])) #plot_simplex(ax4, post_test, test_scores, title=title, points=post_test) - ternary.plt.show() + #ternary.plt.show() + ternary.plt.savefig('./simplex.png') import quapy as qp diff --git a/distribution_matching/figures/simplex_density_plot2.py b/distribution_matching/figures/simplex_density_plot2.py new file mode 100644 index 0000000..72f08f1 --- /dev/null +++ b/distribution_matching/figures/simplex_density_plot2.py @@ -0,0 +1,129 @@ +import ternary +import math +import numpy as np +from sklearn.linear_model import LogisticRegression +from sklearn.model_selection import train_test_split, cross_val_predict +from sklearn.neighbors import KernelDensity +import plotly.figure_factory as ff + +from data import LabelledCollection + +scale = 100 + + +# con ternary (una lib de matplotlib) salen bien pero no puedo crear contornos, o no se +# con plotly salen los contornos bien, pero es un poco un jaleo porque utiliza el navegador... + +def plot_simplex_(ax, density, title='', fontsize=30, points=None): + + tax = ternary.TernaryAxesSubplot(ax=ax, scale=scale) + tax.heatmapf(density, boundary=True, style="triangular", colorbar=False, cmap='viridis') #cmap='magma') + tax.boundary(linewidth=1.0) + corner_fontsize = int(5*fontsize//6) + tax.right_corner_label("$y=3$", fontsize=corner_fontsize) + tax.top_corner_label("$y=2$", fontsize=corner_fontsize) + tax.left_corner_label("$y=1$", fontsize=corner_fontsize) + if title: + tax.set_title(title, loc='center', y=-0.11, fontsize=fontsize) + if points is not None: + tax.scatter(points*scale, marker='o', color='w', alpha=0.25, zorder=10, s=5*scale) + tax.get_axes().axis('off') + tax.clear_matplotlib_ticks() + + return tax + + + +from mpl_toolkits.axes_grid1 import make_axes_locatable +def plot_3class_problem(post_c1, post_c2, post_c3, post_test, alpha, bandwidth): + post_c1 = np.flip(post_c1, axis=1) + post_c2 = np.flip(post_c2, axis=1) + post_c3 = np.flip(post_c3, axis=1) + post_test = np.flip(post_test, axis=1) + + size_=10 + fig = ternary.plt.figure(figsize=(5*size_, 1*size_)) + fig.tight_layout() + ax1 = fig.add_subplot(1, 4, 1) + divider = make_axes_locatable(ax1) + ax2 = fig.add_subplot(1, 4, 2) + divider = make_axes_locatable(ax2) + ax3 = fig.add_subplot(1, 4, 3) + divider = make_axes_locatable(ax3) + ax4 = fig.add_subplot(1, 4, 4) + divider = make_axes_locatable(ax4) + + kde1 = KernelDensity(bandwidth=bandwidth).fit(post_c1) + kde2 = KernelDensity(bandwidth=bandwidth).fit(post_c2) + kde3 = KernelDensity(bandwidth=bandwidth).fit(post_c3) + + #post_c1 = np.concatenate([post_c1, np.eye(3, dtype=float)]) + #post_c2 = np.concatenate([post_c2, np.eye(3, dtype=float)]) + #post_c3 = np.concatenate([post_c3, np.eye(3, dtype=float)]) + + #plot_simplex_(ax1, lambda x:0, title='$f_1(\mathbf{x})=p(s(\mathbf{x})|y=1)$') + #plot_simplex_(ax2, lambda x:0, title='$f_1(\mathbf{x})=p(s(\mathbf{x})|y=1)$') + #plot_simplex_(ax3, lambda x:0, title='$f_1(\mathbf{x})=p(s(\mathbf{x})|y=1)$') + def density(kde): + def d(p): + return np.exp(kde([p])).item() + return d + + plot_simplex_(ax1, density(kde1.score_samples), title='$p_1$') + plot_simplex_(ax2, density(kde2.score_samples), title='$p_2$') + plot_simplex_(ax3, density(kde3.score_samples), title='$p_3$') + #plot_simplex(ax1, post_c1, np.exp(kde1.score_samples(post_c1)), title='$f_1(\mathbf{x})=p(s(\mathbf{x})|y=1)$') #, savepath='figure/y1.png') + #plot_simplex(ax2, post_c2, np.exp(kde2.score_samples(post_c2)), title='$f_2(\mathbf{x})=p(s(\mathbf{x})|y=2)$') #, savepath='figure/y2.png') + #plot_simplex(ax3, post_c3, np.exp(kde3.score_samples(post_c3)), title='$f_3(\mathbf{x})=p(s(\mathbf{x})|y=3)$') #, savepath='figure/y3.png') + + def mixture_(prevs, kdes): + def m(p): + total_density = 0 + for prev, kde in zip(prevs, kdes): + log_density = kde.score_samples([p]).item() + density = np.exp(log_density) + density *= prev + total_density += density + #print(total_density) + return total_density + return m + + title = '$\mathbf{p}_{\mathbf{\\alpha}} = \sum_{i \in n} \\alpha_i p_i$' + + plot_simplex_(ax4, mixture_(alpha, [kde1, kde2, kde3]), title=title, points=post_test) + + #ternary.plt.show() + ternary.plt.savefig('./simplex.pdf') + + +import quapy as qp + + +data = qp.datasets.fetch_twitter('wb', min_df=3, pickle=True, for_model_selection=False) + +Xtr, ytr = data.training.Xy +Xte, yte = data.test.sampling(150, *[0.5, 0.1, 0.4]).Xy + +cls = LogisticRegression(C=0.0001, random_state=0) + +draw_from_training = False +if draw_from_training: + post_tr = cross_val_predict(cls, Xtr, ytr, n_jobs=-1, method='predict_proba') + post_c1 = post_tr[ytr==0] + post_c2 = post_tr[ytr==1] + post_c3 = post_tr[ytr==2] + cls.fit(Xtr, ytr) +else: + cls.fit(Xtr, ytr) + post_te = cls.predict_proba(Xte) + post_c1 = post_te[yte == 0] + post_c2 = post_te[yte == 1] + post_c3 = post_te[yte == 2] + +post_test = cls.predict_proba(Xte) + +alpha = qp.functional.prevalence_from_labels(yte, classes=[0, 1, 2]) + +print(f'test alpha {alpha}') +plot_3class_problem(post_c1, post_c2, post_c3, post_test, alpha, bandwidth=0.1) +