1
0
Fork 0

adding table manager

This commit is contained in:
Alejandro Moreo Fernandez 2021-01-15 08:33:39 +01:00
parent 5793484f70
commit c5ae2f8b1f
6 changed files with 599 additions and 16 deletions

View File

@ -1,5 +1,6 @@
from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression
import quapy as qp import quapy as qp
from quapy.method.aggregative import OneVsAll
import quapy.functional as F import quapy.functional as F
import numpy as np import numpy as np
import os import os
@ -7,9 +8,7 @@ import pickle
import itertools import itertools
from joblib import Parallel, delayed from joblib import Parallel, delayed
import multiprocessing import multiprocessing
import settings
n_jobs = multiprocessing.cpu_count()
def quantification_models(): def quantification_models():
@ -17,11 +16,19 @@ def quantification_models():
return LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1) return LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1)
__C_range = np.logspace(-4, 5, 10) __C_range = np.logspace(-4, 5, 10)
lr_params = {'C': __C_range, 'class_weight': [None, 'balanced']} lr_params = {'C': __C_range, 'class_weight': [None, 'balanced']}
svmperf_params = {'C': __C_range}
yield 'cc', qp.method.aggregative.CC(newLR()), lr_params yield 'cc', qp.method.aggregative.CC(newLR()), lr_params
yield 'acc', qp.method.aggregative.ACC(newLR()), lr_params yield 'acc', qp.method.aggregative.ACC(newLR()), lr_params
yield 'pcc', qp.method.aggregative.PCC(newLR()), lr_params yield 'pcc', qp.method.aggregative.PCC(newLR()), lr_params
yield 'pacc', qp.method.aggregative.PACC(newLR()), lr_params yield 'pacc', qp.method.aggregative.PACC(newLR()), lr_params
yield 'sld', qp.method.aggregative.EMQ(newLR()), lr_params yield 'sld', qp.method.aggregative.EMQ(newLR()), lr_params
yield 'svmq', OneVsAll(qp.method.aggregative.SVMQ(settings.SVMPERF_HOME)), svmperf_params
yield 'svmkld', OneVsAll(qp.method.aggregative.SVMKLD(settings.SVMPERF_HOME)), svmperf_params
yield 'svmnkld', OneVsAll(qp.method.aggregative.SVMNKLD(settings.SVMPERF_HOME)), svmperf_params
# 'svmmae': lambda learner: OneVsAllELM(settings.SVM_PERF_HOME, loss='mae'),
# 'svmmrae': lambda learner: OneVsAllELM(settings.SVM_PERF_HOME, loss='mrae'),
# 'mlpe': lambda learner: MaximumLikelihoodPrevalenceEstimation(),
def evaluate_experiment(true_prevalences, estim_prevalences): def evaluate_experiment(true_prevalences, estim_prevalences):
@ -73,6 +80,7 @@ def run(experiment):
print(f'running dataset={dataset_name} model={model_name} loss={optim_loss}') print(f'running dataset={dataset_name} model={model_name} loss={optim_loss}')
benchmark_devel = qp.datasets.fetch_twitter(dataset_name, for_model_selection=True, min_df=5, pickle=True) benchmark_devel = qp.datasets.fetch_twitter(dataset_name, for_model_selection=True, min_df=5, pickle=True)
benchmark_devel.stats()
# model selection (hyperparameter optimization for a quantification-oriented loss) # model selection (hyperparameter optimization for a quantification-oriented loss)
model_selection = qp.model_selection.GridSearchQ( model_selection = qp.model_selection.GridSearchQ(
@ -122,18 +130,8 @@ if __name__ == '__main__':
datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TRAIN datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TRAIN
models = quantification_models() models = quantification_models()
results = Parallel(n_jobs=n_jobs)( results = Parallel(n_jobs=settings.N_JOBS)(
delayed(run)(experiment) for experiment in itertools.product(optim_losses, datasets, models) delayed(run)(experiment) for experiment in itertools.product(optim_losses, datasets, models)
) )
# QUANTIFIER_ALIASES = {
# 'emq': lambda learner: ExpectationMaximizationQuantifier(learner),
# 'svmq': lambda learner: OneVsAllELM(settings.SVM_PERF_HOME, loss='q'),
# 'svmkld': lambda learner: OneVsAllELM(settings.SVM_PERF_HOME, loss='kld'),
# 'svmnkld': lambda learner: OneVsAllELM(settings.SVM_PERF_HOME, loss='nkld'),
# 'svmmae': lambda learner: OneVsAllELM(settings.SVM_PERF_HOME, loss='mae'),
# 'svmmrae': lambda learner: OneVsAllELM(settings.SVM_PERF_HOME, loss='mrae'),
# 'mlpe': lambda learner: MaximumLikelihoodPrevalenceEstimation(),
# }
#

View File

@ -0,0 +1,5 @@
import multiprocessing
N_JOBS = -2 #multiprocessing.cpu_count()
SVMPERF_HOME = '../svm_perf_quantification'

207
TweetSentQuant/tables2.py Normal file
View File

@ -0,0 +1,207 @@
import quapy as qp
import numpy as np
from os import makedirs
# from evaluate import evaluate_directory, statistical_significance, get_ranks_from_Gao_Sebastiani
import sys, os
import pickle
from experiments import result_path
from result_manager import ResultSet
from tabular import Table
tables_path = './tables'
MAXTONE = 50 # sets the intensity of the maximum color reached by the worst (red) and best (green) results
makedirs(tables_path, exist_ok=True)
sample_size = 100
qp.environ['SAMPLE_SIZE'] = sample_size
nice = {
'mae':'AE',
'mrae':'RAE',
'ae':'AE',
'rae':'RAE',
'svmkld': 'SVM(KLD)',
'svmnkld': 'SVM(NKLD)',
'svmq': 'SVM(Q)',
'svmae': 'SVM(AE)',
'svmnae': 'SVM(NAE)',
'svmmae': 'SVM(AE)',
'svmmrae': 'SVM(RAE)',
'quanet': 'QuaNet',
'hdy': 'HDy',
'dys': 'DyS',
'svmperf':'',
'sanders': 'Sanders',
'semeval13': 'SemEval13',
'semeval14': 'SemEval14',
'semeval15': 'SemEval15',
'semeval16': 'SemEval16',
'Average': 'Average'
}
def nicerm(key):
return '\mathrm{'+nice[key]+'}'
def load_Gao_Sebastiani_previous_results():
def rename(method):
old2new = {
'kld': 'svmkld',
'nkld': 'svmnkld',
'qbeta2': 'svmq',
'em': 'sld'
}
return old2new.get(method, method)
gao_seb_results = {}
with open('./Gao_Sebastiani_results.txt', 'rt') as fin:
lines = fin.readlines()
for line in lines[1:]:
line = line.strip()
parts = line.lower().split()
if len(parts) == 4:
dataset, method, ae, rae = parts
else:
method, ae, rae = parts
learner, method = method.split('-')
method = rename(method)
gao_seb_results[f'{dataset}-{method}-ae'] = float(ae)
gao_seb_results[f'{dataset}-{method}-rae'] = float(rae)
return gao_seb_results
def get_ranks_from_Gao_Sebastiani():
gao_seb_results = load_Gao_Sebastiani_previous_results()
datasets = set([key.split('-')[0] for key in gao_seb_results.keys()])
methods = np.sort(np.unique([key.split('-')[1] for key in gao_seb_results.keys()]))
ranks = {}
for metric in ['ae', 'rae']:
for dataset in datasets:
scores = [gao_seb_results[f'{dataset}-{method}-{metric}'] for method in methods]
order = np.argsort(scores)
sorted_methods = methods[order]
for i, method in enumerate(sorted_methods):
ranks[f'{dataset}-{method}-{metric}'] = i+1
for method in methods:
rankave = np.mean([ranks[f'{dataset}-{method}-{metric}'] for dataset in datasets])
ranks[f'Average-{method}-{metric}'] = rankave
return ranks, gao_seb_results
def save_table(path, table):
print(f'saving results in {path}')
with open(path, 'wt') as foo:
foo.write(table)
datasets = qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST
evaluation_measures = [qp.error.ae, qp.error.rae]
gao_seb_methods = ['cc', 'acc', 'pcc', 'pacc', 'sld', 'svmq', 'svmkld', 'svmnkld']
new_methods = []
def addfunc(dataset, method, loss):
path = result_path(dataset, method, 'm'+loss if not loss.startswith('m') else loss)
if os.path.exists(path):
true_prevs, estim_prevs, _, _, _, _ = pickle.load(open(path, 'rb'))
err_fn = getattr(qp.error, loss)
errors = err_fn(true_prevs, estim_prevs)
return errors
return None
gao_seb_ranks, gao_seb_results = get_ranks_from_Gao_Sebastiani()
for i, eval_func in enumerate(evaluation_measures):
# Tables evaluation scores for AE and RAE (two tables)
# ----------------------------------------------------
eval_name = eval_func.__name__
added_methods = ['svm' + eval_name] + new_methods
methods = gao_seb_methods + added_methods
nold_methods = len(gao_seb_methods)
nnew_methods = len(added_methods)
table = Table(rows=datasets, cols=methods, addfunc=addfunc)
# fill table
for dataset in datasets:
for method in methods:
table.add(dataset, method, eval_name)
tabular = """
\\begin{tabularx}{\\textwidth}{|c||""" + ('Y|'*len(gao_seb_methods))+ '|' + ('Y|'*len(added_methods)) + """} \hline
& \multicolumn{"""+str(nold_methods)+"""}{c||}{Methods tested in~\cite{Gao:2016uq}} & \multicolumn{"""+str(nnew_methods)+"""}{c|}{} \\\\ \hline
"""
rowreplace={dataset: nice.get(dataset, dataset.upper()) for dataset in datasets}
colreplace={method:'\side{' + nice.get(method, method.upper()) +'$^{' + nicerm(eval_name) + '}$} ' for method in methods}
tabular += table.latextabular(rowreplace=rowreplace, colreplace=colreplace)
tabular += "\n\end{tabularx}"
save_table(f'./tables/tab_results_{eval_name}.new2.tex', tabular)
# Tables ranks for AE and RAE (two tables)
# ----------------------------------------------------
def addfuncRank(dataset, method):
rank = table.get(dataset, method, 'rank')
if rank is None:
return None
return [rank]
methods = gao_seb_methods
nold_methods = len(gao_seb_methods)
ranktable = Table(rows=datasets, cols=methods, addfunc=addfuncRank)
# fill table
for dataset in datasets:
for method in methods:
ranktable.add(dataset, method)
tabular = """
\\begin{tabularx}{\\textwidth}{|c||""" + ('Y|' * len(gao_seb_methods)) + """} \hline
& \multicolumn{""" + str(nold_methods) + """}{c||}{Methods tested in~\cite{Gao:2016uq}} \\\\ \hline
"""
for method in methods:
tabular += ' & \side{' + nice.get(method, method.upper()) +'$^{' + nicerm(eval_name) + '}$} '
tabular += '\\\\\hline\n'
for dataset in datasets:
tabular += nice.get(dataset, dataset.upper()) + ' '
for method in methods:
newrank = ranktable.get(dataset, method)
oldrank = gao_seb_ranks[f'{dataset}-{method}-{eval_name}']
if newrank is None:
newrank = '--'
else:
newrank = f'{int(newrank)}'
tabular += ' & ' + f'{newrank}' + f' ({oldrank}) ' + ranktable.get_color(dataset, method)
tabular += '\\\\\hline\n'
tabular += 'Average & '
for method in methods:
newrank = ranktable.get_col_average(method)
oldrank = gao_seb_ranks[f'Average-{method}-{eval_name}']
if newrank is None or np.isnan(newrank):
newrank = '--'
else:
newrank = f'{newrank:.1f}'
oldrank = f'{oldrank:.1f}'
tabular += ' & ' + f'{newrank}' + f' ({oldrank}) ' + ranktable.get_color(dataset, method)
tabular += '\\\\\hline\n'
tabular += "\end{tabularx}"
save_table(f'./tables/tab_rank_{eval_name}.new2.tex', tabular)
print("[Done]")

372
TweetSentQuant/tabular.py Normal file
View File

@ -0,0 +1,372 @@
import numpy as np
import itertools
from scipy.stats import ttest_ind_from_stats, wilcoxon
class Table:
VALID_TESTS = [None, "wilcoxon", "ttest"]
def __init__(self, rows, cols, addfunc, lower_is_better=True, ttest='ttest', prec_mean=3, clean_zero=False,
show_std=False, prec_std=3):
assert ttest in self.VALID_TESTS, f'unknown test, valid are {self.VALID_TESTS}'
self.rows = np.asarray(rows)
self.row_index = {row:i for i,row in enumerate(rows)}
self.cols = np.asarray(cols)
self.col_index = {col:j for j,col in enumerate(cols)}
self.map = {}
self.mfunc = {}
self.rarr = {}
self.carr = {}
self._addmap('values', dtype=object)
self._addmap('fill', dtype=bool, func=lambda x: x is not None)
self._addmap('mean', dtype=float, func=np.mean)
self._addmap('std', dtype=float, func=np.std)
self._addmap('nobs', dtype=float, func=len)
self._addmap('rank', dtype=int, func=None)
self._addmap('color', dtype=object, func=None)
self._addmap('ttest', dtype=object, func=None)
self._addrarr('mean', dtype=float, func=np.mean, argmap='mean')
self._addrarr('min', dtype=float, func=np.min, argmap='mean')
self._addrarr('max', dtype=float, func=np.max, argmap='mean')
self._addcarr('mean', dtype=float, func=np.mean, argmap='mean')
self._addcarr('rank-mean', dtype=float, func=np.mean, argmap='rank')
if self.nrows>1:
self._col_ttest = Table(['ttest'], cols, _merge, lower_is_better, ttest)
else:
self._col_ttest = None
self.addfunc = addfunc
self.lower_is_better = lower_is_better
self.ttest = ttest
self.prec_mean = prec_mean
self.clean_zero = clean_zero
self.show_std = show_std
self.prec_std = prec_std
self.touch()
@property
def nrows(self):
return len(self.rows)
@property
def ncols(self):
return len(self.cols)
def touch(self):
self.modif = True
def update(self):
if self.modif:
self.compute()
def _addmap(self, map, dtype, func=None):
self.map[map] = np.empty((self.nrows, self.ncols), dtype=dtype)
self.mfunc[map] = func
self.touch()
def _addrarr(self, rarr, dtype, func=np.mean, argmap='mean'):
self.rarr[rarr] = {
'arr': np.empty(self.ncols, dtype=dtype),
'func': func,
'argmap': argmap
}
self.touch()
def _addcarr(self, carr, dtype, func=np.mean, argmap='mean'):
self.carr[carr] = {
'arr': np.empty(self.nrows, dtype=dtype),
'func': func,
'argmap': argmap
}
self.touch()
def _getfilled(self):
return np.argwhere(self.map['fill'])
@property
def values(self):
return self.map['values']
def _indexes(self):
return itertools.product(range(self.nrows), range(self.ncols))
def _runmap(self, map):
m = self.map[map]
f = self.mfunc[map]
if f is None:
return
indexes = self._indexes() if map == 'fill' else self._getfilled()
for i,j in indexes:
m[i,j] = f(self.values[i,j])
def _runrarr(self, rarr):
dic = self.rarr[rarr]
arr, f, map = dic['arr'], dic['func'], dic['argmap']
for col, cid in self.col_index.items():
if all(self.map['fill'][:, cid]):
arr[cid] = f(self.map[map][:, cid])
else:
arr[cid] = None
def _runcarr(self, carr):
dic = self.carr[carr]
arr, f, map = dic['arr'], dic['func'], dic['argmap']
for row, rid in self.row_index.items():
if all(self.map['fill'][rid, :]):
arr[rid] = f(self.map[map][rid, :])
else:
arr[rid] = None
def _runrank(self):
for i in range(self.nrows):
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
col_means = [self.map['mean'][i,j] for j in filled_cols_idx]
ranked_cols_idx = filled_cols_idx[np.argsort(col_means)]
if not self.lower_is_better:
ranked_cols_idx = ranked_cols_idx[::-1]
self.map['rank'][i, ranked_cols_idx] = np.arange(1, len(filled_cols_idx)+1)
def _runcolor(self):
for i in range(self.nrows):
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
if filled_cols_idx.size==0:
continue
col_means = [self.map['mean'][i,j] for j in filled_cols_idx]
minval = min(col_means)
maxval = max(col_means)
for col_idx in filled_cols_idx:
val = self.map['mean'][i,col_idx]
norm = (maxval - minval)
if norm > 0:
normval = (val - minval) / norm
else:
normval = 0.5
if self.lower_is_better:
normval = 1 - normval
self.map['color'][i, col_idx] = color_red2green_01(normval)
def _run_ttest(self, row, col1, col2):
mean1 = self.map['mean'][row, col1]
std1 = self.map['std'][row, col1]
nobs1 = self.map['nobs'][row, col1]
mean2 = self.map['mean'][row, col2]
std2 = self.map['std'][row, col2]
nobs2 = self.map['nobs'][row, col2]
_, p_val = ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2)
return p_val
def _run_wilcoxon(self, row, col1, col2):
values1 = self.map['values'][row, col1]
values2 = self.map['values'][row, col2]
_, p_val = wilcoxon(values1, values2)
return p_val
def _runttest(self):
if self.ttest is None:
return
self.some_similar = False
for i in range(self.nrows):
filled_cols_idx = np.argwhere(self.map['fill'][i]).flatten()
if len(filled_cols_idx) <= 1:
continue
col_means = [self.map['mean'][i,j] for j in filled_cols_idx]
best_pos = filled_cols_idx[np.argmin(col_means)]
for j in filled_cols_idx:
if j==best_pos:
continue
if self.ttest == 'ttest':
p_val = self._run_ttest(i, best_pos, j)
else:
p_val = self._run_wilcoxon(i, best_pos, j)
pval_outcome = pval_interpretation(p_val)
self.map['ttest'][i, j] = pval_outcome
if pval_outcome != 'Diff':
self.some_similar = True
def get_col_average(self, col, arr='mean'):
self.update()
cid = self.col_index[col]
return self.rarr[arr]['arr'][cid]
def _map_list(self):
maps = list(self.map.keys())
maps.remove('fill')
maps.remove('values')
maps.remove('color')
maps.remove('ttest')
return ['fill'] + maps
def compute(self):
for map in self._map_list():
self._runmap(map)
self._runrank()
self._runcolor()
self._runttest()
for arr in self.rarr.keys():
self._runrarr(arr)
for arr in self.carr.keys():
self._runcarr(arr)
if self._col_ttest != None:
for col in self.cols:
self._col_ttest.add('ttest', col, self.col_index[col], self.map['fill'], self.values, self.map['mean'], self.ttest)
self._col_ttest.compute()
self.modif = False
def add(self, row, col, *args, **kwargs):
print(row, col, args, kwargs)
values = self.addfunc(row, col, *args, **kwargs)
# if values is None:
# raise ValueError(f'addfunc returned None for row={row} col={col}')
rid, cid = self.coord(row, col)
self.map['values'][rid, cid] = values
self.touch()
def get(self, row, col, attr='mean'):
assert attr in self.map, f'unknwon attribute {attr}'
self.update()
rid, cid = self.coord(row, col)
if self.map['fill'][rid, cid]:
return self.map[attr][rid, cid]
def coord(self, row, col):
assert row in self.row_index, f'row {row} out of range'
assert col in self.col_index, f'col {col} out of range'
rid = self.row_index[row]
cid = self.col_index[col]
return rid, cid
def get_col_table(self):
return self._col_ttest
def get_color(self, row, col):
color = self.get(row, col, attr='color')
if color is None:
return ''
return color
def latex(self, row, col, missing='--', color=True):
self.update()
i,j = self.coord(row, col)
if self.map['fill'][i,j] == False:
return missing
mean = self.map['mean'][i,j]
l = f" {mean:.{self.prec_mean}f}"
if self.clean_zero:
l = l.replace(' 0.', '.')
isbest = self.map['rank'][i,j] == 1
if isbest:
l = "\\textbf{"+l+"}"
else:
if self.ttest is not None and self.some_similar:
test_label = self.map['ttest'][i,j]
if test_label == 'Sim':
l += '^{\dag\phantom{\dag}}'
elif test_label == 'Same':
l += '^{\ddag}'
elif test_label == 'Diff':
l += '^{\phantom{\ddag}}'
if self.show_std:
std = self.map['std'][i,j]
std = f" {std:.{self.prec_std}f}"
if self.clean_zero:
std = std.replace(' 0.', '.')
l += f" \pm {std}"
l = f'$ {l} $'
if color:
l += ' ' + self.map['color'][i,j]
return l
def latextabular(self, missing='--', color=True, rowreplace={}, colreplace={}, average=True):
tab = ' & '
tab += ' & '.join([colreplace.get(col, col) for col in self.cols])
tab += ' \\\\\hline\n'
for row in self.rows:
rowname = rowreplace.get(row, row)
tab += rowname + ' & '
tab += self.latexrow(row, missing, color)
tab += ' \\\\\hline\n'
if average:
tab += 'Average & '
tab += self.latexave(missing, color)
tab += ' \\\\\hline\n'
return tab
def latexrow(self, row, missing='--', color=True):
s = [self.latex(row, col, missing=missing, color=color) for col in self.cols]
s = ' & '.join(s)
return s
def latexave(self, missing='--', color=True):
return self._col_ttest.latexrow('ttest')
def get_rank_table(self):
t = Table(rows=self.rows, cols=self.cols, addfunc=_getrank, ttest=None, prec_mean=0)
for row, col in self._getfilled():
t.add(self.rows[row], self.cols[col], row, col, self.map['rank'])
return t
def _getrank(row, col, rowid, colid, rank):
return [rank[rowid, colid]]
def _merge(unused, col, colidx, fill, values, means, ttest):
if all(fill[:,colidx]):
nrows = values.shape[0]
if ttest=='ttest':
values = np.asarray(means[:, colidx])
else: # wilcoxon
values = [values[i, colidx] for i in range(nrows)]
values = np.concatenate(values)
return values
else:
return None
def pval_interpretation(p_val):
if 0.005 >= p_val:
return 'Diff'
elif 0.05 >= p_val > 0.005:
return 'Sim'
elif p_val > 0.05:
return 'Same'
def color_red2green_01(val, maxtone=50):
if np.isnan(val): return None
assert 0 <= val <= 1, f'val {val} out of range [0,1]'
# rescale to [-1,1]
val = val * 2 - 1
if val < 0:
color = 'red'
tone = maxtone * (-val)
else:
color = 'green'
tone = maxtone * val
return '\cellcolor{' + color + f'!{int(tone)}' + '}'
#
# def addfunc(m,d, mean, size):
# return np.random.rand(size)+mean
#
# t = Table(rows = ['M1', 'M2', 'M3'], cols=['D1', 'D2', 'D3', 'D4'], addfunc=addfunc, ttest='wilcoxon')
# t.add('M1','D1', mean=0.5, size=100)
# t.add('M1','D2', mean=0.5, size=100)
# t.add('M2','D1', mean=0.2, size=100)
# t.add('M2','D2', mean=0.1, size=100)
# t.add('M2','D3', mean=0.7, size=100)
# t.add('M2','D4', mean=0.3, size=100)
# t.add('M3','D1', mean=0.9, size=100)
# t.add('M3','D2', mean=0, size=100)
#
# print(t.latextabular())
#
# print('rank')
# print(t.get_rank_table().latextabular())

View File

@ -186,7 +186,7 @@ class Dataset:
def stats(self): def stats(self):
tr_stats = self.training.stats(show=False) tr_stats = self.training.stats(show=False)
te_stats = self.test.stats(show=False) te_stats = self.test.stats(show=False)
print(f'Name={self.name} #tr-instances={tr_stats["instances"]}, #te-instances={te_stats["instances"]}, ' print(f'Dataset={self.name} #tr-instances={tr_stats["instances"]}, #te-instances={te_stats["instances"]}, '
f'type={tr_stats["type"]}, #features={tr_stats["features"]}, #classes={tr_stats["classes"]}, ' f'type={tr_stats["type"]}, #features={tr_stats["features"]}, #classes={tr_stats["classes"]}, '
f'tr-prevs={tr_stats["prevs"]}, te-prevs={te_stats["prevs"]}') f'tr-prevs={tr_stats["prevs"]}, te-prevs={te_stats["prevs"]}')

View File

@ -408,11 +408,12 @@ class ELM(AggregativeQuantifier, BinaryQuantifier):
self.svmperf_base = svmperf_base self.svmperf_base = svmperf_base
self.loss = loss self.loss = loss
self.kwargs = kwargs self.kwargs = kwargs
self.learner = SVMperf(self.svmperf_base, loss=self.loss, **self.kwargs)
def fit(self, data: LabelledCollection, fit_learner=True): def fit(self, data: LabelledCollection, fit_learner=True):
self._check_binary(data, self.__class__.__name__) self._check_binary(data, self.__class__.__name__)
assert fit_learner, 'the method requires that fit_learner=True' assert fit_learner, 'the method requires that fit_learner=True'
self.learner = SVMperf(self.svmperf_base, loss=self.loss, **self.kwargs).fit(data.instances, data.labels) self.learner.fit(data.instances, data.labels)
return self return self
def aggregate(self, classif_predictions:np.ndarray): def aggregate(self, classif_predictions:np.ndarray):