1
0
Fork 0

hierarchical class problem?

This commit is contained in:
Alejandro Moreo Fernandez 2023-11-13 12:42:57 +01:00
parent 44bfc7921f
commit c9c4511c0d
1 changed files with 9 additions and 6 deletions

View File

@ -7,6 +7,8 @@ from sklearn.base import BaseEstimator
from sklearn.calibration import CalibratedClassifierCV
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import cross_val_predict
from typing_extensions import override
import quapy as qp
import quapy.functional as F
from functional import get_divergence
@ -19,7 +21,7 @@ from quapy.method.base import BaseQuantifier, BinaryQuantifier, OneVsAllGeneric
# Abstract classes
# ------------------------------------
class AggregativeQuantifier(ABC, BaseQuantifier):
class AggregativeQuantifier(BaseQuantifier, ABC):
"""
Abstract class for quantification methods that base their estimations on the aggregation of classification
results. Aggregative quantifiers implement a pipeline that consists of generating classification predictions
@ -65,7 +67,8 @@ class AggregativeQuantifier(ABC, BaseQuantifier):
"""
assert isinstance(fit_classifier, bool), 'unexpected type for "fit_classifier", must be boolean'
self.__check_classifier(adapt_if_necessary=(self.__classifier_method=='predict_proba'))
print(type(self))
self.__check_classifier(adapt_if_necessary=(self.__classifier_method()=='predict_proba'))
if predict_on is None:
if fit_classifier:
@ -149,12 +152,12 @@ class AggregativeQuantifier(ABC, BaseQuantifier):
"""
return self.classifier.predict(instances)
@property
def __classifier_method(self):
print('using predict')
return 'predict'
def __check_classifier(self, adapt_if_necessary=False):
assert hasattr(self.classifier, 'predict')
assert hasattr(self.classifier, self.__classifier_method())
def quantify(self, instances):
"""
@ -199,12 +202,12 @@ class AggregativeProbabilisticQuantifier(AggregativeQuantifier, ABC):
def classify(self, instances):
return self.classifier.predict_proba(instances)
@property
def __classifier_method(self):
print('using predict_proba')
return 'predict_proba'
def __check_classifier(self, adapt_if_necessary=False):
if not hasattr(self.classifier, 'predict_proba'):
if not hasattr(self.classifier, self.__check_classifier()):
if adapt_if_necessary:
print(f'warning: The learner {self.classifier.__class__.__name__} does not seem to be '
f'probabilistic. The learner will be calibrated (using CalibratedClassifierCV).')