forked from moreo/QuaPy
cleaning stuff from LeQua2022 branch
This commit is contained in:
parent
e64a6e989a
commit
cfdf2e35bd
|
@ -1,8 +0,0 @@
|
|||
2. tablas?
|
||||
3. fetch dataset (download, unzip, etc.)
|
||||
5. plots
|
||||
11. Quitar las categorias como columnas de los ficheros de prevalences
|
||||
12. sample_size cannot be set to a non-integer in GridSearchQ whith protocol="gen" (it could, but is not indicated in doc)
|
||||
13. repair doc of GridSearchQ
|
||||
14. reparar la calibracion en LR (lo tuve que quitar para que funcionara GridSearchQ, y lo quité en todos los ficheros)
|
||||
15. podria poner que el eval_budget se usase en GridSearchQ con generator function para el progress bar de tqdm
|
|
@ -1,117 +0,0 @@
|
|||
import argparse
|
||||
import pickle
|
||||
|
||||
from sklearn.decomposition import TruncatedSVD
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression as LR
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
from LeQua2022.pretrained_embeddings import TfidfWordEmbeddingTransformer, WordEmbeddingAverageTransformer
|
||||
from LeQua2022.word_class_embeddings import WordClassEmbeddingsTransformer, ConcatenateEmbeddingsTransformer
|
||||
from quapy.method.aggregative import *
|
||||
from quapy.method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as MLPE
|
||||
import quapy.functional as F
|
||||
from data import *
|
||||
import os
|
||||
import constants
|
||||
|
||||
|
||||
# LeQua official baselines for task T1A (Binary/Vector) and T1B (Multiclass/Vector)
|
||||
# =========================================================
|
||||
|
||||
def baselines():
|
||||
yield CC(LR(n_jobs=-1)), "CC"
|
||||
# yield ACC(LR(n_jobs=-1)), "ACC"
|
||||
# yield PCC(LR(n_jobs=-1)), "PCC"
|
||||
# yield PACC(LR(n_jobs=-1)), "PACC"
|
||||
# yield EMQ(CalibratedClassifierCV(LR(), n_jobs=-1)), "SLD"
|
||||
# yield HDy(LR(n_jobs=-1)) if args.task == 'T2A' else OneVsAll(HDy(LR()), n_jobs=-1), "HDy"
|
||||
# yield MLPE(), "MLPE"
|
||||
|
||||
|
||||
def main(args):
|
||||
|
||||
models_path = qp.util.create_if_not_exist(os.path.join(args.modeldir, args.task))
|
||||
|
||||
path_dev_vectors = os.path.join(args.datadir, 'dev_samples')
|
||||
path_dev_prevs = os.path.join(args.datadir, 'dev_prevalences.txt')
|
||||
path_train = os.path.join(args.datadir, 'training_data.txt')
|
||||
|
||||
qp.environ['SAMPLE_SIZE'] = constants.SAMPLE_SIZE[args.task]
|
||||
|
||||
train = LabelledCollection.load(path_train, load_raw_documents)
|
||||
|
||||
tfidf = TfidfVectorizer(min_df=5, sublinear_tf=True, ngram_range=(1,2))
|
||||
train.instances = tfidf.fit_transform(*train.Xy)
|
||||
|
||||
print(f'number of classes: {len(train.classes_)}')
|
||||
print(f'number of training documents: {len(train)}')
|
||||
print(f'training prevalence: {F.strprev(train.prevalence())}')
|
||||
print(f'training matrix shape: {train.instances.shape}')
|
||||
|
||||
# param_grid = {
|
||||
# 'C': np.logspace(-3, 3, 7),
|
||||
# 'class_weight': ['balanced', None]
|
||||
# }
|
||||
|
||||
param_grid = {
|
||||
'C': [1],
|
||||
'class_weight': ['balanced']
|
||||
}
|
||||
|
||||
def gen_samples():
|
||||
return gen_load_samples(path_dev_vectors, ground_truth_path=path_dev_prevs,
|
||||
load_fn=load_raw_unlabelled_documents, vectorizer=tfidf)
|
||||
|
||||
outs = []
|
||||
for quantifier, q_name in baselines():
|
||||
print(f'{q_name}: Model selection')
|
||||
quantifier = qp.model_selection.GridSearchQ(
|
||||
quantifier,
|
||||
param_grid,
|
||||
sample_size=None,
|
||||
protocol='gen',
|
||||
error=qp.error.mrae,
|
||||
refit=False,
|
||||
verbose=True
|
||||
).fit(train, gen_samples)
|
||||
|
||||
print(f'{q_name} got MAE={quantifier.best_score_:.5f} (hyper-params: {quantifier.best_params_})')
|
||||
outs.append(f'{q_name} got MAE={quantifier.best_score_:.5f} (hyper-params: {quantifier.best_params_})')
|
||||
|
||||
model_path = os.path.join(models_path, q_name+'.'+args.task+'.pkl')
|
||||
print(f'saving model in {model_path}')
|
||||
pickle.dump(quantifier.best_model(), open(model_path, 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
print(outs)
|
||||
with open(f'{args.mode}.{args.task}.txt', 'wt') as foo:
|
||||
for line in outs:
|
||||
foo.write(f'{line}\n')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='LeQua2022 Task T2A/T2B baselines')
|
||||
parser.add_argument('task', metavar='TASK', type=str, choices=['T2A', 'T2B'],
|
||||
help='Task name (T2A, T2B)')
|
||||
parser.add_argument('datadir', metavar='DATA-PATH', type=str,
|
||||
help='Path of the directory containing "dev_prevalences.txt", "training_data.txt", and '
|
||||
'the directory "dev_documents"')
|
||||
parser.add_argument('modeldir', metavar='MODEL-PATH', type=str,
|
||||
help='Path where to save the models. '
|
||||
'A subdirectory named <task> will be automatically created.')
|
||||
args = parser.parse_args()
|
||||
|
||||
if not os.path.exists(args.datadir):
|
||||
raise FileNotFoundError(f'path {args.datadir} does not exist')
|
||||
if not os.path.isdir(args.datadir):
|
||||
raise ValueError(f'path {args.datadir} is not a valid directory')
|
||||
if not os.path.exists(os.path.join(args.datadir, "dev_prevalences.txt")):
|
||||
raise FileNotFoundError(f'path {args.datadir} does not contain "dev_prevalences.txt" file')
|
||||
if not os.path.exists(os.path.join(args.datadir, "training_data.txt")):
|
||||
raise FileNotFoundError(f'path {args.datadir} does not contain "training_data.txt" file')
|
||||
if not os.path.exists(os.path.join(args.datadir, "dev_samples")):
|
||||
raise FileNotFoundError(f'path {args.datadir} does not contain "dev_samples" folder')
|
||||
|
||||
main(args)
|
||||
|
|
@ -1,108 +0,0 @@
|
|||
import argparse
|
||||
import pickle
|
||||
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.linear_model import LogisticRegression as LR
|
||||
from quapy.method.aggregative import *
|
||||
from quapy.method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as MLPE
|
||||
import quapy.functional as F
|
||||
from data import *
|
||||
import os
|
||||
import constants
|
||||
|
||||
|
||||
# LeQua official baselines for task T1A (Binary/Vector) and T1B (Multiclass/Vector)
|
||||
# =========================================================
|
||||
|
||||
def baselines():
|
||||
yield CC(LR(n_jobs=-1)), "CC"
|
||||
# yield ACC(LR(n_jobs=-1)), "ACC"
|
||||
# yield PCC(LR(n_jobs=-1)), "PCC"
|
||||
yield PACC(LR(n_jobs=-1)), "PACC"
|
||||
yield EMQ(CalibratedClassifierCV(LR(), n_jobs=-1)), "SLD"
|
||||
# yield HDy(LR(n_jobs=-1)) if args.task == 'T1A' else OneVsAll(HDy(LR()), n_jobs=-1), "HDy"
|
||||
# yield MLPE(), "MLPE"
|
||||
|
||||
|
||||
def main(args):
|
||||
|
||||
models_path = qp.util.create_if_not_exist(os.path.join(args.modeldir, args.task))
|
||||
|
||||
path_dev_vectors = os.path.join(args.datadir, 'dev_samples')
|
||||
path_dev_prevs = os.path.join(args.datadir, 'dev_prevalences.txt')
|
||||
path_train = os.path.join(args.datadir, 'training_data.txt')
|
||||
|
||||
qp.environ['SAMPLE_SIZE'] = constants.SAMPLE_SIZE[args.task]
|
||||
|
||||
if args.task in {'T1A', 'T1B'}:
|
||||
train = LabelledCollection.load(path_train, load_vector_documents)
|
||||
|
||||
def gen_samples():
|
||||
return gen_load_samples(path_dev_vectors, ground_truth_path=path_dev_prevs, load_fn=load_vector_documents)
|
||||
else:
|
||||
train = LabelledCollection.load(path_train, load_raw_documents)
|
||||
tfidf = TfidfVectorizer(min_df=5, sublinear_tf=True, ngram_range=(1, 2))
|
||||
train.instances = tfidf.fit_transform(*train.Xy)
|
||||
|
||||
def gen_samples():
|
||||
return gen_load_samples(path_dev_vectors, ground_truth_path=path_dev_prevs,
|
||||
load_fn=load_raw_documents, vectorizer=tfidf)
|
||||
|
||||
print(f'number of classes: {len(train.classes_)}')
|
||||
print(f'number of training documents: {len(train)}')
|
||||
print(f'training prevalence: {F.strprev(train.prevalence())}')
|
||||
print(f'training matrix shape: {train.instances.shape}')
|
||||
|
||||
param_grid = {
|
||||
'C': np.logspace(-3, 3, 7),
|
||||
'class_weight': ['balanced', None]
|
||||
}
|
||||
|
||||
param_grid = {
|
||||
'C': [0.01],
|
||||
'class_weight': ['balanced']
|
||||
}
|
||||
|
||||
for quantifier, q_name in baselines():
|
||||
print(f'{q_name}: Model selection')
|
||||
quantifier = qp.model_selection.GridSearchQ(
|
||||
quantifier,
|
||||
param_grid,
|
||||
sample_size=None,
|
||||
protocol='gen',
|
||||
error=qp.error.mrae,
|
||||
refit=False,
|
||||
verbose=True
|
||||
).fit(train, gen_samples)
|
||||
|
||||
print(f'{q_name} got MRAE={quantifier.best_score_:.5f} (hyper-params: {quantifier.best_params_})')
|
||||
|
||||
model_path = os.path.join(models_path, q_name+'.pkl')
|
||||
print(f'saving model in {model_path}')
|
||||
pickle.dump(quantifier.best_model(), open(model_path, 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='LeQua2022 baselines')
|
||||
parser.add_argument('task', metavar='TASK', type=str, choices=['T1A', 'T1B', 'T2A', 'T2B'],
|
||||
help='Task name (T1A, T1B, T2A, T2B)')
|
||||
parser.add_argument('datadir', metavar='DATA-PATH', type=str,
|
||||
help='Path of the directory containing "dev_prevalences.txt", "training_data.txt", and '
|
||||
'the directory "dev_samples"')
|
||||
parser.add_argument('modeldir', metavar='MODEL-PATH', type=str,
|
||||
help='Path where to save the models. '
|
||||
'A subdirectory named <task> will be automatically created.')
|
||||
args = parser.parse_args()
|
||||
|
||||
if not os.path.exists(args.datadir):
|
||||
raise FileNotFoundError(f'path {args.datadir} does not exist')
|
||||
if not os.path.isdir(args.datadir):
|
||||
raise ValueError(f'path {args.datadir} is not a valid directory')
|
||||
if not os.path.exists(os.path.join(args.datadir, "dev_prevalences.txt")):
|
||||
raise FileNotFoundError(f'path {args.datadir} does not contain "dev_prevalences.txt" file')
|
||||
if not os.path.exists(os.path.join(args.datadir, "training_data.txt")):
|
||||
raise FileNotFoundError(f'path {args.datadir} does not contain "training_data.txt" file')
|
||||
if not os.path.exists(os.path.join(args.datadir, "dev_samples")):
|
||||
raise FileNotFoundError(f'path {args.datadir} does not contain "dev_samples" folder')
|
||||
|
||||
main(args)
|
|
@ -1,16 +0,0 @@
|
|||
DEV_SAMPLES = 1000
|
||||
TEST_SAMPLES = 5000
|
||||
|
||||
TXA_SAMPLE_SIZE = 250
|
||||
TXB_SAMPLE_SIZE = 1000
|
||||
|
||||
SAMPLE_SIZE={
|
||||
'TXA': TXA_SAMPLE_SIZE,
|
||||
'TXB': TXB_SAMPLE_SIZE,
|
||||
'T1A': TXA_SAMPLE_SIZE,
|
||||
'T1B': TXB_SAMPLE_SIZE,
|
||||
'T2A': TXA_SAMPLE_SIZE,
|
||||
'T2B': TXB_SAMPLE_SIZE
|
||||
}
|
||||
|
||||
ERROR_TOL = 1E-3
|
|
@ -1,222 +0,0 @@
|
|||
import os.path
|
||||
from typing import List, Tuple, Union
|
||||
|
||||
import pandas as pd
|
||||
|
||||
import quapy as qp
|
||||
import numpy as np
|
||||
import sklearn
|
||||
import re
|
||||
from glob import glob
|
||||
|
||||
import constants
|
||||
|
||||
|
||||
def load_category_map(path):
|
||||
cat2code = {}
|
||||
with open(path, 'rt') as fin:
|
||||
for line in fin:
|
||||
category, code = line.split()
|
||||
cat2code[category] = int(code)
|
||||
code2cat = [cat for cat, code in sorted(cat2code.items(), key=lambda x:x[1])]
|
||||
return cat2code, code2cat
|
||||
|
||||
|
||||
def load_raw_documents(path, vectorizer=None):
|
||||
df = pd.read_csv(path)
|
||||
documents = list(df["text"].values)
|
||||
if vectorizer:
|
||||
documents = vectorizer.transform(documents)
|
||||
labels = None
|
||||
if "label" in df.columns:
|
||||
labels = df["label"].values.astype(np.int)
|
||||
return documents, labels
|
||||
|
||||
|
||||
def load_vector_documents(path):
|
||||
D = pd.read_csv(path).to_numpy(dtype=np.float)
|
||||
labelled = D.shape[1] == 301
|
||||
if labelled:
|
||||
X, y = D[:,1:], D[:,0].astype(np.int).flatten()
|
||||
else:
|
||||
X, y = D, None
|
||||
return X, y
|
||||
|
||||
|
||||
def __gen_load_samples_with_groudtruth(path_dir:str, return_id:bool, ground_truth_path:str, load_fn, **load_kwargs):
|
||||
true_prevs = ResultSubmission.load(ground_truth_path)
|
||||
for id, prevalence in true_prevs.iterrows():
|
||||
sample, _ = load_fn(os.path.join(path_dir, f'{id}.txt'), **load_kwargs)
|
||||
yield (id, sample, prevalence) if return_id else (sample, prevalence)
|
||||
|
||||
|
||||
def __gen_load_samples_without_groudtruth(path_dir:str, return_id:bool, load_fn, **load_kwargs):
|
||||
nsamples = len(glob(os.path.join(path_dir, f'*.txt')))
|
||||
for id in range(nsamples):
|
||||
sample, _ = load_fn(os.path.join(path_dir, f'{id}.txt'), **load_kwargs)
|
||||
yield (id, sample) if return_id else sample
|
||||
|
||||
|
||||
def gen_load_samples(path_dir:str, ground_truth_path:str = None, return_id=False, load_fn=load_vector_documents, **load_kwargs):
|
||||
if ground_truth_path is None:
|
||||
# the generator function returns tuples (docid:str, sample:csr_matrix or str)
|
||||
gen_fn = __gen_load_samples_without_groudtruth(path_dir, return_id, load_fn, **load_kwargs)
|
||||
else:
|
||||
# the generator function returns tuples (docid:str, sample:csr_matrix or str, prevalence:ndarray)
|
||||
gen_fn = __gen_load_samples_with_groudtruth(path_dir, return_id, ground_truth_path, load_fn, **load_kwargs)
|
||||
for r in gen_fn:
|
||||
yield r
|
||||
|
||||
|
||||
class ResultSubmission:
|
||||
|
||||
def __init__(self):
|
||||
self.df = None
|
||||
|
||||
def __init_df(self, categories:int):
|
||||
if not isinstance(categories, int) or categories < 2:
|
||||
raise TypeError('wrong format for categories: an int (>=2) was expected')
|
||||
df = pd.DataFrame(columns=list(range(categories)))
|
||||
df.index.set_names('id', inplace=True)
|
||||
self.df = df
|
||||
|
||||
@property
|
||||
def n_categories(self):
|
||||
return len(self.df.columns.values)
|
||||
|
||||
def add(self, sample_id:int, prevalence_values:np.ndarray):
|
||||
if not isinstance(sample_id, int):
|
||||
raise TypeError(f'error: expected int for sample_sample, found {type(sample_id)}')
|
||||
if not isinstance(prevalence_values, np.ndarray):
|
||||
raise TypeError(f'error: expected np.ndarray for prevalence_values, found {type(prevalence_values)}')
|
||||
if self.df is None:
|
||||
self.__init_df(categories=len(prevalence_values))
|
||||
if sample_id in self.df.index.values:
|
||||
raise ValueError(f'error: prevalence values for "{sample_id}" already added')
|
||||
if prevalence_values.ndim!=1 and prevalence_values.size != self.n_categories:
|
||||
raise ValueError(f'error: wrong shape found for prevalence vector {prevalence_values}')
|
||||
if (prevalence_values<0).any() or (prevalence_values>1).any():
|
||||
raise ValueError(f'error: prevalence values out of range [0,1] for "{sample_id}"')
|
||||
if np.abs(prevalence_values.sum()-1) > constants.ERROR_TOL:
|
||||
raise ValueError(f'error: prevalence values do not sum up to one for "{sample_id}"'
|
||||
f'(error tolerance {constants.ERROR_TOL})')
|
||||
|
||||
self.df.loc[sample_id] = prevalence_values
|
||||
|
||||
def __len__(self):
|
||||
return len(self.df)
|
||||
|
||||
@classmethod
|
||||
def load(cls, path: str) -> 'ResultSubmission':
|
||||
df = ResultSubmission.check_file_format(path)
|
||||
r = ResultSubmission()
|
||||
r.df = df
|
||||
return r
|
||||
|
||||
def dump(self, path:str):
|
||||
ResultSubmission.check_dataframe_format(self.df)
|
||||
self.df.to_csv(path)
|
||||
|
||||
def prevalence(self, sample_id:int):
|
||||
sel = self.df.loc[sample_id]
|
||||
if sel.empty:
|
||||
return None
|
||||
else:
|
||||
return sel.values.flatten()
|
||||
|
||||
def iterrows(self):
|
||||
for index, row in self.df.iterrows():
|
||||
prevalence = row.values.flatten()
|
||||
yield index, prevalence
|
||||
|
||||
@classmethod
|
||||
def check_file_format(cls, path) -> Union[pd.DataFrame, Tuple[pd.DataFrame, str]]:
|
||||
try:
|
||||
df = pd.read_csv(path, index_col=0)
|
||||
except Exception as e:
|
||||
print(f'the file {path} does not seem to be a valid csv file. ')
|
||||
print(e)
|
||||
return ResultSubmission.check_dataframe_format(df, path=path)
|
||||
|
||||
@classmethod
|
||||
def check_dataframe_format(cls, df, path=None) -> Union[pd.DataFrame, Tuple[pd.DataFrame, str]]:
|
||||
hint_path = '' # if given, show the data path in the error message
|
||||
if path is not None:
|
||||
hint_path = f' in {path}'
|
||||
|
||||
if df.index.name != 'id' or len(df.columns) < 2:
|
||||
raise ValueError(f'wrong header{hint_path}, '
|
||||
f'the format of the header should be "id,0,...,n-1", '
|
||||
f'where n is the number of categories')
|
||||
if [int(ci) for ci in df.columns.values] != list(range(len(df.columns))):
|
||||
raise ValueError(f'wrong header{hint_path}, category ids should be 0,1,2,...,n-1, '
|
||||
f'where n is the number of categories')
|
||||
if df.empty:
|
||||
raise ValueError(f'error{hint_path}: results file is empty')
|
||||
elif len(df) != constants.DEV_SAMPLES and len(df) != constants.TEST_SAMPLES:
|
||||
raise ValueError(f'wrong number of prevalence values found{hint_path}; '
|
||||
f'expected {constants.DEV_SAMPLES} for development sets and '
|
||||
f'{constants.TEST_SAMPLES} for test sets; found {len(df)}')
|
||||
|
||||
ids = set(df.index.values)
|
||||
expected_ids = set(range(len(df)))
|
||||
if ids != expected_ids:
|
||||
missing = expected_ids - ids
|
||||
if missing:
|
||||
raise ValueError(f'there are {len(missing)} missing ids{hint_path}: {sorted(missing)}')
|
||||
unexpected = ids - expected_ids
|
||||
if unexpected:
|
||||
raise ValueError(f'there are {len(missing)} unexpected ids{hint_path}: {sorted(unexpected)}')
|
||||
|
||||
for category_id in df.columns:
|
||||
if (df[category_id] < 0).any() or (df[category_id] > 1).any():
|
||||
raise ValueError(f'error{hint_path} column "{category_id}" contains values out of range [0,1]')
|
||||
|
||||
prevs = df.values
|
||||
round_errors = np.abs(prevs.sum(axis=-1) - 1.) > constants.ERROR_TOL
|
||||
if round_errors.any():
|
||||
raise ValueError(f'warning: prevalence values in rows with id {np.where(round_errors)[0].tolist()} '
|
||||
f'do not sum up to 1 (error tolerance {constants.ERROR_TOL}), '
|
||||
f'probably due to some rounding errors.')
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def evaluate_submission(true_prevs: ResultSubmission, predicted_prevs: ResultSubmission, sample_size=None, average=True):
|
||||
if sample_size is None:
|
||||
if qp.environ['SAMPLE_SIZE'] is None:
|
||||
raise ValueError('Relative Absolute Error cannot be computed: '
|
||||
'neither sample_size nor qp.environ["SAMPLE_SIZE"] have been specified')
|
||||
else:
|
||||
sample_size = qp.environ['SAMPLE_SIZE']
|
||||
|
||||
if len(true_prevs) != len(predicted_prevs):
|
||||
raise ValueError(f'size mismatch, ground truth file has {len(true_prevs)} entries '
|
||||
f'while the file of predictions contain {len(predicted_prevs)} entries')
|
||||
if true_prevs.n_categories != predicted_prevs.n_categories:
|
||||
raise ValueError(f'these result files are not comparable since the categories are different: '
|
||||
f'true={true_prevs.n_categories} categories vs. '
|
||||
f'predictions={predicted_prevs.n_categories} categories')
|
||||
rae, ae = [], []
|
||||
for sample_id, true_prevalence in true_prevs.iterrows():
|
||||
pred_prevalence = predicted_prevs.prevalence(sample_id)
|
||||
rae.append(qp.error.rae(true_prevalence, pred_prevalence, eps=1./(2*sample_size)))
|
||||
ae.append(qp.error.ae(true_prevalence, pred_prevalence))
|
||||
|
||||
rae = np.asarray(rae)
|
||||
ae = np.asarray(ae)
|
||||
|
||||
if average:
|
||||
return rae.mean(), ae.mean()
|
||||
else:
|
||||
return rae, ae
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -1,42 +0,0 @@
|
|||
import argparse
|
||||
import quapy as qp
|
||||
from data import ResultSubmission, evaluate_submission
|
||||
import constants
|
||||
|
||||
"""
|
||||
LeQua2022 Official evaluation script
|
||||
"""
|
||||
|
||||
def main(args):
|
||||
|
||||
sample_size = constants.SAMPLE_SIZE[args.task]
|
||||
|
||||
true_prev = ResultSubmission.load(args.true_prevalences)
|
||||
pred_prev = ResultSubmission.load(args.pred_prevalences)
|
||||
|
||||
mrae, mae = evaluate_submission(true_prev, pred_prev, sample_size)
|
||||
print(f'MRAE: {mrae:.4f}')
|
||||
print(f'MAE: {mae:.4f}')
|
||||
|
||||
if args.output is not None:
|
||||
with open(args.output, 'wt') as foo:
|
||||
foo.write(f'MRAE: {mrae:.4f}\n')
|
||||
foo.write(f'MAE: {mae:.4f}\n')
|
||||
|
||||
|
||||
if __name__=='__main__':
|
||||
parser = argparse.ArgumentParser(description='LeQua2022 official evaluation script')
|
||||
parser.add_argument('task', metavar='TASK', type=str, choices=['T1A', 'T1B', 'T2A', 'T2B'],
|
||||
help='Task name (T1A, T1B, T2A, T2B)')
|
||||
parser.add_argument('true_prevalences', metavar='TRUE-PREV-PATH', type=str,
|
||||
help='Path of ground truth prevalence values file (.csv)')
|
||||
parser.add_argument('pred_prevalences', metavar='PRED-PREV-PATH', type=str,
|
||||
help='Path of predicted prevalence values file (.csv)')
|
||||
parser.add_argument('--output', metavar='SCORES-PATH', type=str, default=None,
|
||||
help='Path where to store the evaluation scores')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.output is not None:
|
||||
qp.util.create_parent_dir(args.output)
|
||||
|
||||
main(args)
|
|
@ -1,25 +0,0 @@
|
|||
import argparse
|
||||
from data import ResultSubmission
|
||||
|
||||
|
||||
"""
|
||||
LeQua2022 Official format-checker script
|
||||
"""
|
||||
|
||||
def main(args):
|
||||
try:
|
||||
ResultSubmission.check_file_format(args.prevalence_file)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print('Format check: [not passed]')
|
||||
else:
|
||||
print('Format check: [passed]')
|
||||
|
||||
|
||||
if __name__=='__main__':
|
||||
parser = argparse.ArgumentParser(description='LeQua2022 official format-checker script')
|
||||
parser.add_argument('prevalence_file', metavar='PREVALENCEFILE-PATH', type=str,
|
||||
help='Path of the file containing prevalence values to check')
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
|
@ -1,54 +0,0 @@
|
|||
import argparse
|
||||
import quapy as qp
|
||||
from data import ResultSubmission
|
||||
import os
|
||||
import pickle
|
||||
from tqdm import tqdm
|
||||
from data import gen_load_samples
|
||||
from glob import glob
|
||||
import constants
|
||||
|
||||
"""
|
||||
LeQua2022 prediction script
|
||||
"""
|
||||
|
||||
def main(args):
|
||||
|
||||
# check the number of samples
|
||||
nsamples = len(glob(os.path.join(args.samples, '*.txt')))
|
||||
if nsamples not in {constants.DEV_SAMPLES, constants.TEST_SAMPLES}:
|
||||
print(f'Warning: The number of samples does neither coincide with the expected number of '
|
||||
f'dev samples ({constants.DEV_SAMPLES}) nor with the expected number of '
|
||||
f'test samples ({constants.TEST_SAMPLES}).')
|
||||
|
||||
# load pickled model
|
||||
model = pickle.load(open(args.model, 'rb'))
|
||||
|
||||
# predictions
|
||||
predictions = ResultSubmission()
|
||||
for sampleid, sample in tqdm(gen_load_samples(args.samples, return_id=True, load_fn=), desc='predicting', total=nsamples):
|
||||
predictions.add(sampleid, model.quantify(sample))
|
||||
|
||||
# saving
|
||||
qp.util.create_parent_dir(args.output)
|
||||
predictions.dump(args.output)
|
||||
|
||||
|
||||
if __name__=='__main__':
|
||||
parser = argparse.ArgumentParser(description='LeQua2022 prediction script')
|
||||
parser.add_argument('model', metavar='MODEL-PATH', type=str,
|
||||
help='Path of saved model')
|
||||
parser.add_argument('samples', metavar='SAMPLES-PATH', type=str,
|
||||
help='Path to the directory containing the samples')
|
||||
parser.add_argument('output', metavar='PREDICTIONS-PATH', type=str,
|
||||
help='Path where to store the predictions file')
|
||||
parser.add_argument('nf', metavar='NUM-FEATURES', type=int,
|
||||
help='Number of features seen during training')
|
||||
args = parser.parse_args()
|
||||
|
||||
if not os.path.exists(args.samples):
|
||||
raise FileNotFoundError(f'path {args.samples} does not exist')
|
||||
if not os.path.isdir(args.samples):
|
||||
raise ValueError(f'path {args.samples} is not a valid directory')
|
||||
|
||||
main(args)
|
Loading…
Reference in New Issue