forked from moreo/QuaPy
adding all svm-perf-based quantifiers with timeout
This commit is contained in:
parent
d510630d3b
commit
d197167cfd
|
@ -12,6 +12,7 @@ import argparse
|
|||
|
||||
parser = argparse.ArgumentParser(description='Run experiments for Tweeter Sentiment Quantification')
|
||||
parser.add_argument('results', metavar='RESULT_PATH', type=str, help='path to the directory where to store the results')
|
||||
parser.add_argument('svmperfpath', metavar='SVMPERF_PATH', type=str, help='path to the directory with svmperf')
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
|
@ -26,11 +27,11 @@ def quantification_models():
|
|||
yield 'pcc', qp.method.aggregative.PCC(newLR()), lr_params
|
||||
yield 'pacc', qp.method.aggregative.PACC(newLR()), lr_params
|
||||
yield 'sld', qp.method.aggregative.EMQ(newLR()), lr_params
|
||||
#yield 'svmq', OneVsAll(qp.method.aggregative.SVMQ(settings.SVMPERF_HOME)), svmperf_params
|
||||
#yield 'svmkld', OneVsAll(qp.method.aggregative.SVMKLD(settings.SVMPERF_HOME)), svmperf_params
|
||||
#yield 'svmnkld', OneVsAll(qp.method.aggregative.SVMNKLD(settings.SVMPERF_HOME)), svmperf_params
|
||||
yield 'svmmae', OneVsAll(qp.method.aggregative.SVMAE(settings.SVMPERF_HOME)), svmperf_params
|
||||
yield 'svmmrae', OneVsAll(qp.method.aggregative.SVMRAE(settings.SVMPERF_HOME)), svmperf_params
|
||||
yield 'svmq', OneVsAll(qp.method.aggregative.SVMQ(args.svmperfpath)), svmperf_params
|
||||
yield 'svmkld', OneVsAll(qp.method.aggregative.SVMKLD(args.svmperfpath)), svmperf_params
|
||||
yield 'svmnkld', OneVsAll(qp.method.aggregative.SVMNKLD(args.svmperfpath)), svmperf_params
|
||||
yield 'svmmae', OneVsAll(qp.method.aggregative.SVMAE(args.svmperfpath)), svmperf_params
|
||||
yield 'svmmrae', OneVsAll(qp.method.aggregative.SVMRAE(args.svmperfpath)), svmperf_params
|
||||
|
||||
# 'mlpe': lambda learner: MaximumLikelihoodPrevalenceEstimation(),
|
||||
|
||||
|
@ -85,7 +86,7 @@ def run(experiment):
|
|||
return
|
||||
else:
|
||||
print(f'running dataset={dataset_name} model={model_name} loss={optim_loss}')
|
||||
|
||||
|
||||
benchmark_devel = qp.datasets.fetch_twitter(dataset_name, for_model_selection=True, min_df=5, pickle=True)
|
||||
benchmark_devel.stats()
|
||||
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
import multiprocessing
|
||||
|
||||
|
||||
N_JOBS = -2 #multiprocessing.cpu_count()
|
||||
SVMPERF_HOME = '../svm_perf_quantification'
|
Loading…
Reference in New Issue