forked from moreo/QuaPy
uci multiclass datasets
This commit is contained in:
parent
5b90656bd1
commit
d7192430e4
|
@ -7,6 +7,8 @@ import zipfile
|
|||
from os.path import join
|
||||
import pandas as pd
|
||||
import scipy
|
||||
import pickle
|
||||
from ucimlrepo import fetch_ucirepo
|
||||
|
||||
from quapy.data.base import Dataset, LabelledCollection
|
||||
from quapy.data.preprocessing import text2tfidf, reduce_columns
|
||||
|
@ -45,6 +47,14 @@ UCI_DATASETS = ['acute.a', 'acute.b',
|
|||
'wine-q-red', 'wine-q-white',
|
||||
'yeast']
|
||||
|
||||
UCI_MULTICLASS_DATASETS = ['dry-bean',
|
||||
'wine-quality',
|
||||
'academic-success',
|
||||
'digits',
|
||||
'letter']
|
||||
|
||||
KAGGLE_MULTICLASS_DATASETS = ['human-activity']
|
||||
|
||||
LEQUA2022_TASKS = ['T1A', 'T1B', 'T2A', 'T2B']
|
||||
|
||||
_TXA_SAMPLE_SIZE = 250
|
||||
|
@ -548,6 +558,99 @@ def fetch_UCILabelledCollection(dataset_name, data_home=None, verbose=False) ->
|
|||
data.stats()
|
||||
return data
|
||||
|
||||
def fetch_UCIMulticlassDataset(dataset_name, data_home=None, test_split=0.3, verbose=False) -> Dataset:
|
||||
"""
|
||||
Loads a UCI multiclass dataset as an instance of :class:`quapy.data.base.Dataset`, as used in
|
||||
`Pérez-Gállego, P., Quevedo, J. R., & del Coz, J. J. (2017).
|
||||
Using ensembles for problems with characterizable changes in data distribution: A case study on quantification.
|
||||
Information Fusion, 34, 87-100. <https://www.sciencedirect.com/science/article/pii/S1566253516300628>`_
|
||||
and
|
||||
`Pérez-Gállego, P., Castano, A., Quevedo, J. R., & del Coz, J. J. (2019).
|
||||
Dynamic ensemble selection for quantification tasks.
|
||||
Information Fusion, 45, 1-15. <https://www.sciencedirect.com/science/article/pii/S1566253517303652>`_.
|
||||
The datasets do not come with a predefined train-test split (see :meth:`fetch_UCILabelledCollection` for further
|
||||
information on how to use these collections), and so a train-test split is generated at desired proportion.
|
||||
The list of valid dataset names can be accessed in `quapy.data.datasets.UCI_DATASETS`
|
||||
|
||||
:param dataset_name: a dataset name
|
||||
:param data_home: specify the quapy home directory where collections will be dumped (leave empty to use the default
|
||||
~/quay_data/ directory)
|
||||
:param test_split: proportion of documents to be included in the test set. The rest conforms the training set
|
||||
:param verbose: set to True (default is False) to get information (from the UCI ML repository) about the datasets
|
||||
:return: a :class:`quapy.data.base.Dataset` instance
|
||||
"""
|
||||
data = fetch_UCIMulticlassLabelledCollection(dataset_name, data_home, verbose)
|
||||
return Dataset(*data.split_stratified(1 - test_split, random_state=0))
|
||||
|
||||
def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=False) -> LabelledCollection:
|
||||
"""
|
||||
Loads a UCI multiclass collection as an instance of :class:`quapy.data.base.LabelledCollection`, as used in
|
||||
`Pérez-Gállego, P., Quevedo, J. R., & del Coz, J. J. (2017).
|
||||
Using ensembles for problems with characterizable changes in data distribution: A case study on quantification.
|
||||
Information Fusion, 34, 87-100. <https://www.sciencedirect.com/science/article/pii/S1566253516300628>`_
|
||||
and
|
||||
`Pérez-Gállego, P., Castano, A., Quevedo, J. R., & del Coz, J. J. (2019).
|
||||
Dynamic ensemble selection for quantification tasks.
|
||||
Information Fusion, 45, 1-15. <https://www.sciencedirect.com/science/article/pii/S1566253517303652>`_.
|
||||
The datasets do not come with a predefined train-test split, and so Pérez-Gállego et al. adopted a 5FCVx2 evaluation
|
||||
protocol, meaning that each collection was used to generate two rounds (hence the x2) of 5 fold cross validation.
|
||||
This can be reproduced by using :meth:`quapy.data.base.Dataset.kFCV`, e.g.:
|
||||
|
||||
>>> import quapy as qp
|
||||
>>> collection = qp.datasets.fetch_UCILabelledCollection("dry-bean")
|
||||
>>> for data in qp.domains.Dataset.kFCV(collection, nfolds=5, nrepeats=2):
|
||||
>>> ...
|
||||
|
||||
The list of valid dataset names can be accessed in `quapy.data.datasets.UCI_MULTICLASS_DATASETS`
|
||||
|
||||
:param dataset_name: a dataset name
|
||||
:param data_home: specify the quapy home directory where collections will be dumped (leave empty to use the default
|
||||
~/quay_data/ directory)
|
||||
:param test_split: proportion of documents to be included in the test set. The rest conforms the training set
|
||||
:param verbose: set to True (default is False) to get information (from the UCI ML repository) about the datasets
|
||||
:return: a :class:`quapy.data.base.LabelledCollection` instance
|
||||
"""
|
||||
assert dataset_name in UCI_MULTICLASS_DATASETS, \
|
||||
f'Name {dataset_name} does not match any known dataset from the UCI Machine Learning datasets repository (multiclass). ' \
|
||||
f'Valid ones are {UCI_MULTICLASS_DATASETS}'
|
||||
|
||||
if data_home is None:
|
||||
data_home = get_quapy_home()
|
||||
|
||||
identifiers = {"dry-bean": 602,
|
||||
"wine-quality":186,
|
||||
"academic-success":697,
|
||||
"digits":80,
|
||||
"letter":59}
|
||||
|
||||
full_names = {"dry-bean": "Dry Bean Dataset",
|
||||
"wine-quality":"Wine Quality",
|
||||
"academic-success":"Predict students' dropout and academic success",
|
||||
"digits":"Optical Recognition of Handwritten Digits",
|
||||
"letter":"Letter Recognition"
|
||||
}
|
||||
|
||||
identifier = identifiers[dataset_name]
|
||||
fullname = full_names[dataset_name]
|
||||
|
||||
print(f'Loading UCI Muticlass {dataset_name} ({fullname})')
|
||||
|
||||
file = join(data_home,'uci_multiclass',dataset_name+'.pkl')
|
||||
if os.path.exists(file):
|
||||
with open(file, 'rb') as file:
|
||||
data = pickle.load(file)
|
||||
else:
|
||||
data = fetch_ucirepo(id=identifier)
|
||||
X, y = data['data']['features'].to_numpy(), data['data']['targets'].to_numpy().squeeze()
|
||||
data = LabelledCollection(X, y)
|
||||
os.makedirs(os.path.dirname(file), exist_ok=True)
|
||||
with open(file, 'wb') as file:
|
||||
pickle.dump(data, file)
|
||||
|
||||
|
||||
data.stats()
|
||||
return data
|
||||
|
||||
|
||||
def _df_replace(df, col, repl={'yes': 1, 'no':0}, astype=float):
|
||||
df[col] = df[col].apply(lambda x:repl[x]).astype(astype, copy=False)
|
||||
|
|
Loading…
Reference in New Issue