forked from moreo/QuaPy
adding the possibility to estimate the training prevalence, instead of using the true training prevalence, as a starting point in emq
This commit is contained in:
parent
643a19228b
commit
eb860e9678
|
@ -1,6 +1,8 @@
|
|||
import numpy as np
|
||||
from sklearn.calibration import CalibratedClassifierCV
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
import quapy as qp
|
||||
import quapy.functional as F
|
||||
from data.datasets import LEQUA2022_SAMPLE_SIZE, fetch_lequa2022
|
||||
from evaluation import evaluation_report
|
||||
from method.aggregative import EMQ
|
||||
|
@ -14,7 +16,8 @@ qp.environ['SAMPLE_SIZE'] = LEQUA2022_SAMPLE_SIZE[task]
|
|||
training, val_generator, test_generator = fetch_lequa2022(task=task)
|
||||
|
||||
# define the quantifier
|
||||
quantifier = EMQ(learner=LogisticRegression())
|
||||
learner = CalibratedClassifierCV(LogisticRegression())
|
||||
quantifier = EMQ(learner=learner)
|
||||
|
||||
# model selection
|
||||
param_grid = {'C': np.logspace(-3, 3, 7), 'class_weight': ['balanced', None]}
|
||||
|
@ -24,6 +27,10 @@ quantifier = model_selection.fit(training)
|
|||
# evaluation
|
||||
report = evaluation_report(quantifier, protocol=test_generator, error_metrics=['mae', 'mrae', 'mkld'], verbose=True)
|
||||
|
||||
pd.set_option('display.max_columns', None)
|
||||
pd.set_option('display.width', 1000)
|
||||
# printing results
|
||||
pd.set_option('display.expand_frame_repr', False)
|
||||
report['estim-prev'] = report['estim-prev'].map(F.strprev)
|
||||
print(report)
|
||||
|
||||
print('Averaged values:')
|
||||
print(report.mean())
|
||||
|
|
|
@ -501,17 +501,25 @@ class EMQ(AggregativeProbabilisticQuantifier):
|
|||
maximum-likelihood estimation, in a mutually recursive way, until convergence.
|
||||
|
||||
:param learner: a sklearn's Estimator that generates a classifier
|
||||
:param exact_train_prev: set to True (default) for using, as the initial observation, the true training prevalence;
|
||||
or set to False for computing the training prevalence as an estimate, akin to PCC, i.e., as the expected
|
||||
value of the posterior probabilities of the trianing documents as suggested in
|
||||
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_:
|
||||
"""
|
||||
|
||||
MAX_ITER = 1000
|
||||
EPSILON = 1e-4
|
||||
|
||||
def __init__(self, learner: BaseEstimator):
|
||||
def __init__(self, learner: BaseEstimator, exact_train_prev=True):
|
||||
self.learner = learner
|
||||
self.exact_train_prev = exact_train_prev
|
||||
|
||||
def fit(self, data: LabelledCollection, fit_learner=True):
|
||||
self.learner, _ = _training_helper(self.learner, data, fit_learner, ensure_probabilistic=True)
|
||||
if self.exact_train_prev:
|
||||
self.train_prevalence = F.prevalence_from_labels(data.labels, self.classes_)
|
||||
else:
|
||||
self.train_prevalence = PCC(learner=self.learner).fit(data, fit_learner=False).quantify(data.X)
|
||||
return self
|
||||
|
||||
def aggregate(self, classif_posteriors, epsilon=EPSILON):
|
||||
|
|
Loading…
Reference in New Issue