1
0
Fork 0

Merging aggregativefit into devel. The aggregative fit was created to generate a two-level quantification fit mirroring the inference phase. I.e., the fit now amounts to fitting a classifier plus fitting an aggregation function (just like the fit procedure, that amounts to invoking a classifier, and invoking an aggregation function). This is useful to nestle training phaes in model selection.

This commit is contained in:
Alejandro Moreo Fernandez 2024-01-19 18:26:03 +01:00
commit efe385318f
16 changed files with 1313 additions and 526 deletions

29
.gitignore vendored
View File

@ -130,3 +130,32 @@ dmypy.json
.pyre/ .pyre/
*__pycache__* *__pycache__*
*.pdf
*.zip
*.png
*.csv
*.pkl
*.dataframe
# other projects
LeQua2022
MultiLabel
NewMethods
Ordinal
Retrieval
eDiscovery
poster-cikm
slides-cikm
slides-short-cikm
quick_experiment
svm_perf_quantification/svm_struct
svm_perf_quantification/svm_light
TweetSentQuant
*.png

View File

@ -2,7 +2,7 @@ import quapy as qp
from quapy.data import LabelledCollection from quapy.data import LabelledCollection
from quapy.method.base import BinaryQuantifier from quapy.method.base import BinaryQuantifier
from quapy.model_selection import GridSearchQ from quapy.model_selection import GridSearchQ
from quapy.method.aggregative import AggregativeProbabilisticQuantifier from quapy.method.aggregative import AggregativeSoftQuantifier
from quapy.protocol import APP from quapy.protocol import APP
import numpy as np import numpy as np
from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression
@ -15,7 +15,7 @@ from sklearn.linear_model import LogisticRegression
# internal hyperparameter (let say, alpha) which is the decision threshold. Let's also assume the quantifier # internal hyperparameter (let say, alpha) which is the decision threshold. Let's also assume the quantifier
# is binary, for simplicity. # is binary, for simplicity.
class MyQuantifier(AggregativeProbabilisticQuantifier, BinaryQuantifier): class MyQuantifier(AggregativeSoftQuantifier, BinaryQuantifier):
def __init__(self, classifier, alpha=0.5): def __init__(self, classifier, alpha=0.5):
self.alpha = alpha self.alpha = alpha
# aggregative quantifiers have an internal self.classifier attribute # aggregative quantifiers have an internal self.classifier attribute

View File

@ -1,19 +1,26 @@
import quapy as qp import quapy as qp
from quapy.protocol import APP from method.kdey import KDEyML
from quapy.method.non_aggregative import DMx
from quapy.protocol import APP, UPP
from quapy.method.aggregative import DMy from quapy.method.aggregative import DMy
from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression
from examples.comparing_gridsearch import OLD_GridSearchQ
import numpy as np import numpy as np
from time import time
""" """
In this example, we show how to perform model selection on a DistributionMatching quantifier. In this example, we show how to perform model selection on a DistributionMatching quantifier.
""" """
model = DMy(LogisticRegression()) model = KDEyML(LogisticRegression())
qp.environ['SAMPLE_SIZE'] = 100 qp.environ['SAMPLE_SIZE'] = 100
qp.environ['N_JOBS'] = -1 qp.environ['N_JOBS'] = -1
training, test = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5).train_test # training, test = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5).train_test
training, test = qp.datasets.fetch_UCIMulticlassDataset('letter').train_test
with qp.util.temp_seed(0):
# The model will be returned by the fit method of GridSearchQ. # The model will be returned by the fit method of GridSearchQ.
# Every combination of hyper-parameters will be evaluated by confronting the # Every combination of hyper-parameters will be evaluated by confronting the
@ -23,7 +30,7 @@ training, test = qp.datasets.fetch_reviews('imdb', tfidf=True, min_df=5).train_t
# values in the entire range of values from a grid (e.g., [0, 0.1, 0.2, ..., 1]). # values in the entire range of values from a grid (e.g., [0, 0.1, 0.2, ..., 1]).
# We devote 30% of the dataset for this exploration. # We devote 30% of the dataset for this exploration.
training, validation = training.split_stratified(train_prop=0.7) training, validation = training.split_stratified(train_prop=0.7)
protocol = APP(validation) protocol = UPP(validation)
# We will explore a classification-dependent hyper-parameter (e.g., the 'C' # We will explore a classification-dependent hyper-parameter (e.g., the 'C'
# hyper-parameter of LogisticRegression) and a quantification-dependent hyper-parameter # hyper-parameter of LogisticRegression) and a quantification-dependent hyper-parameter
@ -33,25 +40,32 @@ protocol = APP(validation)
# classifier. # classifier.
param_grid = { param_grid = {
'classifier__C': np.logspace(-3,3,7), 'classifier__C': np.logspace(-3,3,7),
'nbins': [8, 16, 32, 64], 'classifier__class_weight': ['balanced', None],
'bandwidth': np.linspace(0.01, 0.2, 20),
} }
tinit = time()
# model = OLD_GridSearchQ(
model = qp.model_selection.GridSearchQ( model = qp.model_selection.GridSearchQ(
model=model, model=model,
param_grid=param_grid, param_grid=param_grid,
protocol=protocol, protocol=protocol,
error='mae', # the error to optimize is the MAE (a quantification-oriented loss) error='mae', # the error to optimize is the MAE (a quantification-oriented loss)
refit=True, # retrain on the whole labelled set once done refit=False, # retrain on the whole labelled set once done
# raise_errors=False,
verbose=True # show information as the process goes on verbose=True # show information as the process goes on
).fit(training) ).fit(training)
tend = time()
print(f'model selection ended: best hyper-parameters={model.best_params_}') print(f'model selection ended: best hyper-parameters={model.best_params_}')
model = model.best_model_ model = model.best_model_
# evaluation in terms of MAE # evaluation in terms of MAE
# we use the same evaluation protocol (APP) on the test set # we use the same evaluation protocol (APP) on the test set
mae_score = qp.evaluation.evaluate(model, protocol=APP(test), error_metric='mae') mae_score = qp.evaluation.evaluate(model, protocol=UPP(test), error_metric='mae')
print(f'MAE={mae_score:.5f}') print(f'MAE={mae_score:.5f}')
print(f'model selection took {tend-tinit:.1f}s')

View File

@ -104,7 +104,7 @@ def run(experiment):
timeout=60*60, timeout=60*60,
verbose=True verbose=True
) )
model_selection.fit(data.training) model_selection.fit(train)
model = model_selection.best_model() model = model_selection.best_model()
best_params = model_selection.best_params_ best_params = model_selection.best_params_
else: else:

View File

@ -1,6 +1,9 @@
Change Log 0.1.8 Change Log 0.1.8
---------------- ----------------
- Fixed ThresholdOptimization methods (X, T50, MAX, MS and MS2). Thanks to Tobias Schumacher and colleagues for pointing
this out in Appendix A of "Schumacher, T., Strohmaier, M., & Lemmerich, F. (2021). A comparative evaluation of
quantification methods. arXiv:2103.03223v3 [cs.LG]"
- Added HDx and DistributionMatchingX to non-aggregative quantifiers (see also the new example "comparing_HDy_HDx.py") - Added HDx and DistributionMatchingX to non-aggregative quantifiers (see also the new example "comparing_HDy_HDx.py")
- New UCI multiclass datasets added (thanks to Pablo González). The 5 UCI multiclass datasets are those corresponding - New UCI multiclass datasets added (thanks to Pablo González). The 5 UCI multiclass datasets are those corresponding
to the following criteria: to the following criteria:

View File

@ -24,7 +24,8 @@ class RecalibratedProbabilisticClassifier:
class RecalibratedProbabilisticClassifierBase(BaseEstimator, RecalibratedProbabilisticClassifier): class RecalibratedProbabilisticClassifierBase(BaseEstimator, RecalibratedProbabilisticClassifier):
""" """
Applies a (re)calibration method from `abstention.calibration`, as defined in Applies a (re)calibration method from `abstention.calibration`, as defined in
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_: `Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_.
:param classifier: a scikit-learn probabilistic classifier :param classifier: a scikit-learn probabilistic classifier
:param calibrator: the calibration object (an instance of abstention.calibration.CalibratorFactory) :param calibrator: the calibration object (an instance of abstention.calibration.CalibratorFactory)
@ -59,7 +60,7 @@ class RecalibratedProbabilisticClassifierBase(BaseEstimator, RecalibratedProbabi
elif isinstance(k, float): elif isinstance(k, float):
if not (0 < k < 1): if not (0 < k < 1):
raise ValueError('wrong value for val_split: the proportion of validation documents must be in (0,1)') raise ValueError('wrong value for val_split: the proportion of validation documents must be in (0,1)')
return self.fit_cv(X, y) return self.fit_tr_val(X, y)
def fit_cv(self, X, y): def fit_cv(self, X, y):
""" """
@ -94,7 +95,7 @@ class RecalibratedProbabilisticClassifierBase(BaseEstimator, RecalibratedProbabi
self.classifier.fit(Xtr, ytr) self.classifier.fit(Xtr, ytr)
posteriors = self.classifier.predict_proba(Xva) posteriors = self.classifier.predict_proba(Xva)
nclasses = len(np.unique(yva)) nclasses = len(np.unique(yva))
self.calibrator = self.calibrator(posteriors, np.eye(nclasses)[yva], posterior_supplied=True) self.calibration_function = self.calibrator(posteriors, np.eye(nclasses)[yva], posterior_supplied=True)
return self return self
def predict(self, X): def predict(self, X):

View File

@ -66,6 +66,24 @@ def prevalence_from_probabilities(posteriors, binarize: bool = False):
return prevalences return prevalences
def as_binary_prevalence(positive_prevalence: Union[float, np.ndarray], clip_if_necessary=False):
"""
Helper that, given a float representing the prevalence for the positive class, returns a np.ndarray of two
values representing a binary distribution.
:param positive_prevalence: prevalence for the positive class
:param clip_if_necessary: if True, clips the value in [0,1] in order to guarantee the resulting distribution
is valid. If False, it then checks that the value is in the valid range, and raises an error if not.
:return: np.ndarray of shape `(2,)`
"""
if clip_if_necessary:
positive_prevalence = np.clip(positive_prevalence, 0, 1)
else:
assert 0 <= positive_prevalence <= 1, 'the value provided is not a valid prevalence for the positive class'
return np.asarray([1-positive_prevalence, positive_prevalence]).T
def HellingerDistance(P, Q) -> float: def HellingerDistance(P, Q) -> float:
""" """
Computes the Hellingher Distance (HD) between (discretized) distributions `P` and `Q`. Computes the Hellingher Distance (HD) between (discretized) distributions `P` and `Q`.

File diff suppressed because it is too large Load Diff

214
quapy/method/kdey.py Normal file
View File

@ -0,0 +1,214 @@
from typing import Union
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.neighbors import KernelDensity
import quapy as qp
from quapy.data import LabelledCollection
from quapy.method.aggregative import AggregativeSoftQuantifier
import quapy.functional as F
from sklearn.metrics.pairwise import rbf_kernel
class KDEBase:
BANDWIDTH_METHOD = ['scott', 'silverman']
@classmethod
def _check_bandwidth(cls, bandwidth):
assert bandwidth in KDEBase.BANDWIDTH_METHOD or isinstance(bandwidth, float), \
f'invalid bandwidth, valid ones are {KDEBase.BANDWIDTH_METHOD} or float values'
if isinstance(bandwidth, float):
assert 0 < bandwidth < 1, "the bandwith for KDEy should be in (0,1), since this method models the unit simplex"
def get_kde_function(self, X, bandwidth):
return KernelDensity(bandwidth=bandwidth).fit(X)
def pdf(self, kde, X):
return np.exp(kde.score_samples(X))
def get_mixture_components(self, X, y, n_classes, bandwidth):
return [self.get_kde_function(X[y == cat], bandwidth) for cat in range(n_classes)]
class KDEyML(AggregativeSoftQuantifier, KDEBase):
def __init__(self, classifier: BaseEstimator, val_split=10, bandwidth=0.1, n_jobs=None, random_state=0):
self._check_bandwidth(bandwidth)
self.classifier = classifier
self.val_split = val_split
self.bandwidth = bandwidth
self.n_jobs = n_jobs
self.random_state=random_state
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
self.mix_densities = self.get_mixture_components(*classif_predictions.Xy, data.n_classes, self.bandwidth)
return self
def aggregate(self, posteriors: np.ndarray):
"""
Searches for the mixture model parameter (the sought prevalence values) that maximizes the likelihood
of the data (i.e., that minimizes the negative log-likelihood)
:param posteriors: instances in the sample converted into posterior probabilities
:return: a vector of class prevalence estimates
"""
np.random.RandomState(self.random_state)
epsilon = 1e-10
n_classes = len(self.mix_densities)
test_densities = [self.pdf(kde_i, posteriors) for kde_i in self.mix_densities]
def neg_loglikelihood(prev):
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip (prev, test_densities))
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
return -np.sum(test_loglikelihood)
return F.optim_minimize(neg_loglikelihood, n_classes)
class KDEyHD(AggregativeSoftQuantifier, KDEBase):
def __init__(self, classifier: BaseEstimator, val_split=10, divergence: str='HD',
bandwidth=0.1, n_jobs=None, random_state=0, montecarlo_trials=10000):
self._check_bandwidth(bandwidth)
self.classifier = classifier
self.val_split = val_split
self.divergence = divergence
self.bandwidth = bandwidth
self.n_jobs = n_jobs
self.random_state=random_state
self.montecarlo_trials = montecarlo_trials
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
self.mix_densities = self.get_mixture_components(*classif_predictions.Xy, data.n_classes, self.bandwidth)
N = self.montecarlo_trials
rs = self.random_state
n = data.n_classes
self.reference_samples = np.vstack([kde_i.sample(N//n, random_state=rs) for kde_i in self.mix_densities])
self.reference_classwise_densities = np.asarray([self.pdf(kde_j, self.reference_samples) for kde_j in self.mix_densities])
self.reference_density = np.mean(self.reference_classwise_densities, axis=0) # equiv. to (uniform @ self.reference_classwise_densities)
return self
def aggregate(self, posteriors: np.ndarray):
# we retain all n*N examples (sampled from a mixture with uniform parameter), and then
# apply importance sampling (IS). In this version we compute D(p_alpha||q) with IS
n_classes = len(self.mix_densities)
test_kde = self.get_kde_function(posteriors, self.bandwidth)
test_densities = self.pdf(test_kde, self.reference_samples)
def f_squared_hellinger(u):
return (np.sqrt(u)-1)**2
# todo: this will fail when self.divergence is a callable, and is not the right place to do it anyway
if self.divergence.lower() == 'hd':
f = f_squared_hellinger
else:
raise ValueError('only squared HD is currently implemented')
epsilon = 1e-10
qs = test_densities + epsilon
rs = self.reference_density + epsilon
iw = qs/rs #importance weights
p_class = self.reference_classwise_densities + epsilon
fracs = p_class/qs
def divergence(prev):
# ps / qs = (prev @ p_class) / qs = prev @ (p_class / qs) = prev @ fracs
ps_div_qs = prev @ fracs
return np.mean( f(ps_div_qs) * iw )
return F.optim_minimize(divergence, n_classes)
class KDEyCS(AggregativeSoftQuantifier):
def __init__(self, classifier: BaseEstimator, val_split=10, bandwidth=0.1, n_jobs=None, random_state=0):
KDEBase._check_bandwidth(bandwidth)
self.classifier = classifier
self.val_split = val_split
self.bandwidth = bandwidth
self.n_jobs = n_jobs
self.random_state=random_state
def gram_matrix_mix_sum(self, X, Y=None):
# this adapts the output of the rbf_kernel function (pairwise evaluations of Gaussian kernels k(x,y))
# to contain pairwise evaluations of N(x|mu,Sigma1+Sigma2) with mu=y and Sigma1 and Sigma2 are
# two "scalar matrices" (h^2)*I each, so Sigma1+Sigma2 has scalar 2(h^2) (h is the bandwidth)
h = self.bandwidth
variance = 2 * (h**2)
nD = X.shape[1]
gamma = 1/(2*variance)
norm_factor = 1/np.sqrt(((2*np.pi)**nD) * (variance**(nD)))
gram = norm_factor * rbf_kernel(X, Y, gamma=gamma)
return gram.sum()
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
P, y = classif_predictions.Xy
n = data.n_classes
assert all(sorted(np.unique(y)) == np.arange(n)), \
'label name gaps not allowed in current implementation'
# counts_inv keeps track of the relative weight of each datapoint within its class
# (i.e., the weight in its KDE model)
counts_inv = 1 / (data.counts())
# tr_tr_sums corresponds to symbol \overline{B} in the paper
tr_tr_sums = np.zeros(shape=(n,n), dtype=float)
for i in range(n):
for j in range(n):
if i > j:
tr_tr_sums[i,j] = tr_tr_sums[j,i]
else:
block = self.gram_matrix_mix_sum(P[y == i], P[y == j] if i!=j else None)
tr_tr_sums[i, j] = block
# keep track of these data structures for the test phase
self.Ptr = P
self.ytr = y
self.tr_tr_sums = tr_tr_sums
self.counts_inv = counts_inv
return self
def aggregate(self, posteriors: np.ndarray):
Ptr = self.Ptr
Pte = posteriors
y = self.ytr
tr_tr_sums = self.tr_tr_sums
M, nD = Pte.shape
Minv = (1/M) # t in the paper
n = Ptr.shape[1]
# becomes a constant that does not affect the optimization, no need to compute it
# partC = 0.5*np.log(self.gram_matrix_mix_sum(Pte) * Kinv * Kinv)
# tr_te_sums corresponds to \overline{a}*(1/Li)*(1/M) in the paper (note the constants
# are already aggregated to tr_te_sums, so these multiplications are not carried out
# at each iteration of the optimization phase)
tr_te_sums = np.zeros(shape=n, dtype=float)
for i in range(n):
tr_te_sums[i] = self.gram_matrix_mix_sum(Ptr[y==i], Pte)
def divergence(alpha):
# called \overline{r} in the paper
alpha_ratio = alpha * self.counts_inv
# recal that tr_te_sums already accounts for the constant terms (1/Li)*(1/M)
partA = -np.log((alpha_ratio @ tr_te_sums) * Minv)
partB = 0.5 * np.log(alpha_ratio @ tr_tr_sums @ alpha_ratio)
return partA + partB #+ partC
return F.optim_minimize(divergence, n)

View File

@ -12,7 +12,7 @@ from quapy import functional as F
from quapy.data import LabelledCollection from quapy.data import LabelledCollection
from quapy.model_selection import GridSearchQ from quapy.model_selection import GridSearchQ
from quapy.method.base import BaseQuantifier, BinaryQuantifier from quapy.method.base import BaseQuantifier, BinaryQuantifier
from quapy.method.aggregative import CC, ACC, PACC, HDy, EMQ from quapy.method.aggregative import CC, ACC, PACC, HDy, EMQ, AggregativeQuantifier
try: try:
from . import neural from . import neural
@ -26,6 +26,65 @@ else:
QuaNet = "QuaNet is not available due to missing torch package" QuaNet = "QuaNet is not available due to missing torch package"
class MedianEstimator2(BinaryQuantifier):
"""
This method is a meta-quantifier that returns, as the estimated class prevalence values, the median of the
estimation returned by differently (hyper)parameterized base quantifiers.
The median of unit-vectors is only guaranteed to be a unit-vector for n=2 dimensions,
i.e., in cases of binary quantification.
:param base_quantifier: the base, binary quantifier
:param random_state: a seed to be set before fitting any base quantifier (default None)
:param param_grid: the grid or parameters towards which the median will be computed
:param n_jobs: number of parllel workes
"""
def __init__(self, base_quantifier: BinaryQuantifier, param_grid: dict, random_state=None, n_jobs=None):
self.base_quantifier = base_quantifier
self.param_grid = param_grid
self.random_state = random_state
self.n_jobs = qp._get_njobs(n_jobs)
def get_params(self, deep=True):
return self.base_quantifier.get_params(deep)
def set_params(self, **params):
self.base_quantifier.set_params(**params)
def _delayed_fit(self, args):
with qp.util.temp_seed(self.random_state):
params, training = args
model = deepcopy(self.base_quantifier)
model.set_params(**params)
model.fit(training)
return model
def fit(self, training: LabelledCollection):
self._check_binary(training, self.__class__.__name__)
configs = qp.model_selection.expand_grid(self.param_grid)
self.models = qp.util.parallel(
self._delayed_fit,
((params, training) for params in configs),
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs
)
return self
def _delayed_predict(self, args):
model, instances = args
return model.quantify(instances)
def quantify(self, instances):
prev_preds = qp.util.parallel(
self._delayed_predict,
((model, instances) for model in self.models),
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs
)
prev_preds = np.asarray(prev_preds)
return np.median(prev_preds, axis=0)
class MedianEstimator(BinaryQuantifier): class MedianEstimator(BinaryQuantifier):
""" """
This method is a meta-quantifier that returns, as the estimated class prevalence values, the median of the This method is a meta-quantifier that returns, as the estimated class prevalence values, the median of the
@ -58,16 +117,63 @@ class MedianEstimator(BinaryQuantifier):
model.fit(training) model.fit(training)
return model return model
def _delayed_fit_classifier(self, args):
with qp.util.temp_seed(self.random_state):
print('enter job')
cls_params, training = args
model = deepcopy(self.base_quantifier)
model.set_params(**cls_params)
predictions = model.classifier_fit_predict(training, predict_on=model.val_split)
print('exit job')
return (model, predictions)
def _delayed_fit_aggregation(self, args):
with qp.util.temp_seed(self.random_state):
print('\tenter job')
((model, predictions), q_params), training = args
model = deepcopy(model)
model.set_params(**q_params)
model.aggregation_fit(predictions, training)
print('\texit job')
return model
def fit(self, training: LabelledCollection): def fit(self, training: LabelledCollection):
self._check_binary(training, self.__class__.__name__) self._check_binary(training, self.__class__.__name__)
params_keys = list(self.param_grid.keys())
params_values = list(self.param_grid.values()) if isinstance(self.base_quantifier, AggregativeQuantifier):
hyper = [dict({k: val[i] for i, k in enumerate(params_keys)}) for val in itertools.product(*params_values)] cls_configs, q_configs = qp.model_selection.group_params(self.param_grid)
if len(cls_configs) > 1:
models_preds = qp.util.parallel(
self._delayed_fit_classifier,
((params, training) for params in cls_configs),
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs,
asarray=False
)
else:
print('only 1')
model = self.base_quantifier
model.set_params(**cls_configs[0])
predictions = model.classifier_fit_predict(training, predict_on=model.val_split)
models_preds = [(model, predictions)]
self.models = qp.util.parallel(
self._delayed_fit_aggregation,
((setup, training) for setup in itertools.product(models_preds, q_configs)),
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs,
asarray=False
)
else:
configs = qp.model_selection.expand_grid(self.param_grid)
self.models = qp.util.parallel( self.models = qp.util.parallel(
self._delayed_fit, self._delayed_fit,
((params, training) for params in hyper), ((params, training) for params in configs),
seed=qp.environ.get('_R_SEED', None), seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs n_jobs=self.n_jobs,
asarray=False
) )
return self return self
@ -80,13 +186,13 @@ class MedianEstimator(BinaryQuantifier):
self._delayed_predict, self._delayed_predict,
((model, instances) for model in self.models), ((model, instances) for model in self.models),
seed=qp.environ.get('_R_SEED', None), seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs n_jobs=self.n_jobs,
asarray=False
) )
prev_preds = np.asarray(prev_preds) prev_preds = np.asarray(prev_preds)
return np.median(prev_preds, axis=0) return np.median(prev_preds, axis=0)
class Ensemble(BaseQuantifier): class Ensemble(BaseQuantifier):
VALID_POLICIES = {'ave', 'ptr', 'ds'} | qp.error.QUANTIFICATION_ERROR_NAMES VALID_POLICIES = {'ave', 'ptr', 'ds'} | qp.error.QUANTIFICATION_ERROR_NAMES

View File

@ -194,7 +194,7 @@ class QuaNetTrainer(BaseQuantifier):
label_predictions = np.argmax(posteriors, axis=-1) label_predictions = np.argmax(posteriors, axis=-1)
prevs_estim = [] prevs_estim = []
for quantifier in self.quantifiers.values(): for quantifier in self.quantifiers.values():
predictions = posteriors if isinstance(quantifier, AggregativeProbabilisticQuantifier) else label_predictions predictions = posteriors if isinstance(quantifier, AggregativeSoftQuantifier) else label_predictions
prevs_estim.extend(quantifier.aggregate(predictions)) prevs_estim.extend(quantifier.aggregate(predictions))
# there is no real need for adding static estims like the TPR or FPR from training since those are constant # there is no real need for adding static estims like the TPR or FPR from training since those are constant

View File

@ -1,7 +1,7 @@
from typing import Union, Callable from typing import Union, Callable
import numpy as np import numpy as np
from functional import get_divergence from quapy.functional import get_divergence
from quapy.data import LabelledCollection from quapy.data import LabelledCollection
from quapy.method.base import BaseQuantifier, BinaryQuantifier from quapy.method.base import BaseQuantifier, BinaryQuantifier
import quapy.functional as F import quapy.functional as F

View File

@ -1,7 +1,9 @@
import itertools import itertools
import signal import signal
from copy import deepcopy from copy import deepcopy
from enum import Enum
from typing import Union, Callable from typing import Union, Callable
from functools import wraps
import numpy as np import numpy as np
from sklearn import clone from sklearn import clone
@ -10,10 +12,37 @@ import quapy as qp
from quapy import evaluation from quapy import evaluation
from quapy.protocol import AbstractProtocol, OnLabelledCollectionProtocol from quapy.protocol import AbstractProtocol, OnLabelledCollectionProtocol
from quapy.data.base import LabelledCollection from quapy.data.base import LabelledCollection
from quapy.method.aggregative import BaseQuantifier from quapy.method.aggregative import BaseQuantifier, AggregativeQuantifier
from quapy.util import timeout
from time import time from time import time
class Status(Enum):
SUCCESS = 1
TIMEOUT = 2
INVALID = 3
ERROR = 4
class ConfigStatus:
def __init__(self, params, status, msg=''):
self.params = params
self.status = status
self.msg = msg
def __str__(self):
return f':params:{self.params} :status:{self.status} ' + self.msg
def __repr__(self):
return str(self)
def success(self):
return self.status == Status.SUCCESS
def failed(self):
return self.status != Status.SUCCESS
class GridSearchQ(BaseQuantifier): class GridSearchQ(BaseQuantifier):
"""Grid Search optimization targeting a quantification-oriented metric. """Grid Search optimization targeting a quantification-oriented metric.
@ -26,11 +55,14 @@ class GridSearchQ(BaseQuantifier):
:param protocol: a sample generation protocol, an instance of :class:`quapy.protocol.AbstractProtocol` :param protocol: a sample generation protocol, an instance of :class:`quapy.protocol.AbstractProtocol`
:param error: an error function (callable) or a string indicating the name of an error function (valid ones :param error: an error function (callable) or a string indicating the name of an error function (valid ones
are those in :class:`quapy.error.QUANTIFICATION_ERROR` are those in :class:`quapy.error.QUANTIFICATION_ERROR`
:param refit: whether or not to refit the model on the whole labelled collection (training+validation) with :param refit: whether to refit the model on the whole labelled collection (training+validation) with
the best chosen hyperparameter combination. Ignored if protocol='gen' the best chosen hyperparameter combination. Ignored if protocol='gen'
:param timeout: establishes a timer (in seconds) for each of the hyperparameters configurations being tested. :param timeout: establishes a timer (in seconds) for each of the hyperparameters configurations being tested.
Whenever a run takes longer than this timer, that configuration will be ignored. If all configurations end up Whenever a run takes longer than this timer, that configuration will be ignored. If all configurations end up
being ignored, a TimeoutError exception is raised. If -1 (default) then no time bound is set. being ignored, a TimeoutError exception is raised. If -1 (default) then no time bound is set.
:param raise_errors: boolean, if True then raises an exception when a param combination yields any error, if
otherwise is False (default), then the combination is marked with an error status, but the process goes on.
However, if no configuration yields a valid model, then a ValueError exception will be raised.
:param verbose: set to True to get information through the stdout :param verbose: set to True to get information through the stdout
""" """
@ -42,6 +74,7 @@ class GridSearchQ(BaseQuantifier):
refit=True, refit=True,
timeout=-1, timeout=-1,
n_jobs=None, n_jobs=None,
raise_errors=False,
verbose=False): verbose=False):
self.model = model self.model = model
@ -50,6 +83,7 @@ class GridSearchQ(BaseQuantifier):
self.refit = refit self.refit = refit
self.timeout = timeout self.timeout = timeout
self.n_jobs = qp._get_njobs(n_jobs) self.n_jobs = qp._get_njobs(n_jobs)
self.raise_errors = raise_errors
self.verbose = verbose self.verbose = verbose
self.__check_error(error) self.__check_error(error)
assert isinstance(protocol, AbstractProtocol), 'unknown protocol' assert isinstance(protocol, AbstractProtocol), 'unknown protocol'
@ -69,6 +103,98 @@ class GridSearchQ(BaseQuantifier):
raise ValueError(f'unexpected error type; must either be a callable function or a str representing\n' raise ValueError(f'unexpected error type; must either be a callable function or a str representing\n'
f'the name of an error function in {qp.error.QUANTIFICATION_ERROR_NAMES}') f'the name of an error function in {qp.error.QUANTIFICATION_ERROR_NAMES}')
def _prepare_classifier(self, cls_params):
model = deepcopy(self.model)
def job(cls_params):
model.set_params(**cls_params)
predictions = model.classifier_fit_predict(self._training)
return predictions
predictions, status, took = self._error_handler(job, cls_params)
self._sout(f'[classifier fit] hyperparams={cls_params} [took {took:.3f}s]')
return model, predictions, status, took
def _prepare_aggregation(self, args):
model, predictions, cls_took, cls_params, q_params = args
model = deepcopy(model)
params = {**cls_params, **q_params}
def job(q_params):
model.set_params(**q_params)
model.aggregation_fit(predictions, self._training)
score = evaluation.evaluate(model, protocol=self.protocol, error_metric=self.error)
return score
score, status, aggr_took = self._error_handler(job, q_params)
self._print_status(params, score, status, aggr_took)
return model, params, score, status, (cls_took+aggr_took)
def _prepare_nonaggr_model(self, params):
model = deepcopy(self.model)
def job(params):
model.set_params(**params)
model.fit(self._training)
score = evaluation.evaluate(model, protocol=self.protocol, error_metric=self.error)
return score
score, status, took = self._error_handler(job, params)
self._print_status(params, score, status, took)
return model, params, score, status, took
def _compute_scores_aggregative(self, training):
# break down the set of hyperparameters into two: classifier-specific, quantifier-specific
cls_configs, q_configs = group_params(self.param_grid)
# train all classifiers and get the predictions
self._training = training
cls_outs = qp.util.parallel(
self._prepare_classifier,
cls_configs,
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs
)
# filter out classifier configurations that yielded any error
success_outs = []
for (model, predictions, status, took), cls_config in zip(cls_outs, cls_configs):
if status.success():
success_outs.append((model, predictions, took, cls_config))
else:
self.error_collector.append(status)
if len(success_outs) == 0:
raise ValueError('No valid configuration found for the classifier!')
# explore the quantifier-specific hyperparameters for each valid training configuration
aggr_configs = [(*out, q_config) for out, q_config in itertools.product(success_outs, q_configs)]
aggr_outs = qp.util.parallel(
self._prepare_aggregation,
aggr_configs,
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs
)
return aggr_outs
def _compute_scores_nonaggregative(self, training):
configs = expand_grid(self.param_grid)
self._training = training
scores = qp.util.parallel(
self._prepare_nonaggr_model,
configs,
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs
)
return scores
def _print_status(self, params, score, status, took):
if status.success():
self._sout(f'hyperparams=[{params}]\t got {self.error.__name__} = {score:.5f} [took {took:.3f}s]')
else:
self._sout(f'error={status}')
def fit(self, training: LabelledCollection): def fit(self, training: LabelledCollection):
""" Learning routine. Fits methods with all combinations of hyperparameters and selects the one minimizing """ Learning routine. Fits methods with all combinations of hyperparameters and selects the one minimizing
the error metric. the error metric.
@ -76,97 +202,63 @@ class GridSearchQ(BaseQuantifier):
:param training: the training set on which to optimize the hyperparameters :param training: the training set on which to optimize the hyperparameters
:return: self :return: self
""" """
params_keys = list(self.param_grid.keys())
params_values = list(self.param_grid.values())
protocol = self.protocol if self.refit and not isinstance(self.protocol, OnLabelledCollectionProtocol):
raise RuntimeWarning(
self.param_scores_ = {} f'"refit" was requested, but the protocol does not implement '
self.best_score_ = None f'the {OnLabelledCollectionProtocol.__name__} interface'
)
tinit = time() tinit = time()
hyper = [dict({k: val[i] for i, k in enumerate(params_keys)}) for val in itertools.product(*params_values)] self.error_collector = []
self._sout(f'starting model selection with {self.n_jobs =}')
#pass a seed to parallel so it is set in clild processes
scores = qp.util.parallel(
self._delayed_eval,
((params, training) for params in hyper),
seed=qp.environ.get('_R_SEED', None),
n_jobs=self.n_jobs
)
for params, score, model in scores: self._sout(f'starting model selection with n_jobs={self.n_jobs}')
if score is not None: if isinstance(self.model, AggregativeQuantifier):
results = self._compute_scores_aggregative(training)
else:
results = self._compute_scores_nonaggregative(training)
self.param_scores_ = {}
self.best_score_ = None
for model, params, score, status, took in results:
if status.success():
if self.best_score_ is None or score < self.best_score_: if self.best_score_ is None or score < self.best_score_:
self.best_score_ = score self.best_score_ = score
self.best_params_ = params self.best_params_ = params
self.best_model_ = model self.best_model_ = model
self.param_scores_[str(params)] = score self.param_scores_[str(params)] = score
else: else:
self.param_scores_[str(params)] = 'timeout' self.param_scores_[str(params)] = status.status
self.error_collector.append(status)
tend = time()-tinit tend = time()-tinit
if self.best_score_ is None: if self.best_score_ is None:
raise TimeoutError('no combination of hyperparameters seem to work') raise ValueError('no combination of hyperparameters seemed to work')
self._sout(f'optimization finished: best params {self.best_params_} (score={self.best_score_:.5f}) ' self._sout(f'optimization finished: best params {self.best_params_} (score={self.best_score_:.5f}) '
f'[took {tend:.4f}s]') f'[took {tend:.4f}s]')
no_errors = len(self.error_collector)
if no_errors>0:
self._sout(f'warning: {no_errors} errors found')
for err in self.error_collector:
self._sout(f'\t{str(err)}')
if self.refit: if self.refit:
if isinstance(protocol, OnLabelledCollectionProtocol): if isinstance(self.protocol, OnLabelledCollectionProtocol):
tinit = time()
self._sout(f'refitting on the whole development set') self._sout(f'refitting on the whole development set')
self.best_model_.fit(training + protocol.get_labelled_collection()) self.best_model_.fit(training + self.protocol.get_labelled_collection())
tend = time() - tinit
self.refit_time_ = tend
else: else:
raise RuntimeWarning(f'"refit" was requested, but the protocol does not ' # already checked
f'implement the {OnLabelledCollectionProtocol.__name__} interface') raise RuntimeWarning(f'the model cannot be refit on the whole dataset')
return self return self
def _delayed_eval(self, args):
params, training = args
protocol = self.protocol
error = self.error
if self.timeout > 0:
def handler(signum, frame):
raise TimeoutError()
signal.signal(signal.SIGALRM, handler)
tinit = time()
if self.timeout > 0:
signal.alarm(self.timeout)
try:
model = deepcopy(self.model)
# overrides default parameters with the parameters being explored at this iteration
model.set_params(**params)
model.fit(training)
score = evaluation.evaluate(model, protocol=protocol, error_metric=error)
ttime = time()-tinit
self._sout(f'hyperparams={params}\t got {error.__name__} score {score:.5f} [took {ttime:.4f}s]')
if self.timeout > 0:
signal.alarm(0)
except TimeoutError:
self._sout(f'timeout ({self.timeout}s) reached for config {params}')
score = None
except ValueError as e:
self._sout(f'the combination of hyperparameters {params} is invalid')
raise e
except Exception as e:
self._sout(f'something went wrong for config {params}; skipping:')
self._sout(f'\tException: {e}')
score = None
return params, score, model
def quantify(self, instances): def quantify(self, instances):
"""Estimate class prevalence values using the best model found after calling the :meth:`fit` method. """Estimate class prevalence values using the best model found after calling the :meth:`fit` method.
@ -203,7 +295,42 @@ class GridSearchQ(BaseQuantifier):
return self.best_model_ return self.best_model_
raise ValueError('best_model called before fit') raise ValueError('best_model called before fit')
def _error_handler(self, func, params):
"""
Endorses one job with two returned values: the status, and the time of execution
:param func: the function to be called
:param params: parameters of the function
:return: `tuple(out, status, time)` where `out` is the function output,
`status` is an enum value from `Status`, and `time` is the time it
took to complete the call
"""
output = None
def _handle(status, exception):
if self.raise_errors:
raise exception
else:
return ConfigStatus(params, status, str(e))
try:
with timeout(self.timeout):
tinit = time()
output = func(params)
status = ConfigStatus(params, Status.SUCCESS)
except TimeoutError as e:
status = _handle(Status.TIMEOUT, str(e))
except ValueError as e:
status = _handle(Status.INVALID, str(e))
except Exception as e:
status = _handle(Status.ERROR, str(e))
took = time() - tinit
return output, status, took
def cross_val_predict(quantifier: BaseQuantifier, data: LabelledCollection, nfolds=3, random_state=0): def cross_val_predict(quantifier: BaseQuantifier, data: LabelledCollection, nfolds=3, random_state=0):
@ -229,3 +356,43 @@ def cross_val_predict(quantifier: BaseQuantifier, data: LabelledCollection, nfol
return total_prev return total_prev
def expand_grid(param_grid: dict):
"""
Expands a param_grid dictionary as a list of configurations.
Example:
>>> combinations = expand_grid({'A': [1, 10, 100], 'B': [True, False]})
>>> print(combinations)
>>> [{'A': 1, 'B': True}, {'A': 1, 'B': False}, {'A': 10, 'B': True}, {'A': 10, 'B': False}, {'A': 100, 'B': True}, {'A': 100, 'B': False}]
:param param_grid: dictionary with keys representing hyper-parameter names, and values representing the range
to explore for that hyper-parameter
:return: a list of configurations, i.e., combinations of hyper-parameter assignments in the grid.
"""
params_keys = list(param_grid.keys())
params_values = list(param_grid.values())
configs = [{k: combs[i] for i, k in enumerate(params_keys)} for combs in itertools.product(*params_values)]
return configs
def group_params(param_grid: dict):
"""
Partitions a param_grid dictionary as two lists of configurations, one for the classifier-specific
hyper-parameters, and another for que quantifier-specific hyper-parameters
:param param_grid: dictionary with keys representing hyper-parameter names, and values representing the range
to explore for that hyper-parameter
:return: two expanded grids of configurations, one for the classifier, another for the quantifier
"""
classifier_params, quantifier_params = {}, {}
for key, values in param_grid.items():
if key.startswith('classifier__') or key == 'val_split':
classifier_params[key] = values
else:
quantifier_params[key] = values
classifier_configs = expand_grid(classifier_params)
quantifier_configs = expand_grid(quantifier_params)
return classifier_configs, quantifier_configs

View File

@ -22,9 +22,9 @@ class HierarchyTestCase(unittest.TestCase):
def test_probabilistic(self): def test_probabilistic(self):
lr = LogisticRegression() lr = LogisticRegression()
for m in [CC(lr), ACC(lr)]: for m in [CC(lr), ACC(lr)]:
self.assertEqual(isinstance(m, AggregativeProbabilisticQuantifier), False) self.assertEqual(isinstance(m, AggregativeSoftQuantifier), False)
for m in [PCC(lr), PACC(lr)]: for m in [PCC(lr), PACC(lr)]:
self.assertEqual(isinstance(m, AggregativeProbabilisticQuantifier), True) self.assertEqual(isinstance(m, AggregativeSoftQuantifier), True)
if __name__ == '__main__': if __name__ == '__main__':

View File

@ -10,6 +10,8 @@ import quapy as qp
import numpy as np import numpy as np
from joblib import Parallel, delayed from joblib import Parallel, delayed
from time import time
import signal
def _get_parallel_slices(n_tasks, n_jobs): def _get_parallel_slices(n_tasks, n_jobs):
@ -38,7 +40,7 @@ def map_parallel(func, args, n_jobs):
return list(itertools.chain.from_iterable(results)) return list(itertools.chain.from_iterable(results))
def parallel(func, args, n_jobs, seed=None): def parallel(func, args, n_jobs, seed=None, asarray=True, backend='loky'):
""" """
A wrapper of multiprocessing: A wrapper of multiprocessing:
@ -58,9 +60,12 @@ def parallel(func, args, n_jobs, seed=None):
stack.enter_context(qp.util.temp_seed(seed)) stack.enter_context(qp.util.temp_seed(seed))
return func(*args) return func(*args)
return Parallel(n_jobs=n_jobs)( out = Parallel(n_jobs=n_jobs, backend=backend)(
delayed(func_dec)(qp.environ, None if seed is None else seed+i, args_i) for i, args_i in enumerate(args) delayed(func_dec)(qp.environ, None if seed is None else seed+i, args_i) for i, args_i in enumerate(args)
) )
if asarray:
out = np.asarray(out)
return out
@contextlib.contextmanager @contextlib.contextmanager
@ -254,3 +259,35 @@ class EarlyStop:
if self.patience <= 0: if self.patience <= 0:
self.STOP = True self.STOP = True
@contextlib.contextmanager
def timeout(seconds):
"""
Opens a context that will launch an exception if not closed after a given number of seconds
>>> def func(start_msg, end_msg):
>>> print(start_msg)
>>> sleep(2)
>>> print(end_msg)
>>>
>>> with timeout(1):
>>> func('begin function', 'end function')
>>> Out[]
>>> begin function
>>> TimeoutError
:param seconds: number of seconds, set to <=0 to ignore the timer
"""
if seconds > 0:
def handler(signum, frame):
raise TimeoutError()
signal.signal(signal.SIGALRM, handler)
signal.alarm(seconds)
yield
if seconds > 0:
signal.alarm(0)