forked from moreo/QuaPy
fixing requests
This commit is contained in:
parent
a9f10f77f4
commit
ffab2131a8
|
@ -7,9 +7,10 @@ import zipfile
|
|||
from os.path import join
|
||||
import pandas as pd
|
||||
import scipy
|
||||
import pickle
|
||||
|
||||
from ucimlrepo import fetch_ucirepo
|
||||
|
||||
from quapy.util import pickled_resource
|
||||
from quapy.data.base import Dataset, LabelledCollection
|
||||
from quapy.data.preprocessing import text2tfidf, reduce_columns
|
||||
from quapy.data.reader import *
|
||||
|
@ -558,23 +559,20 @@ def fetch_UCILabelledCollection(dataset_name, data_home=None, verbose=False) ->
|
|||
|
||||
def fetch_UCIMulticlassDataset(dataset_name, data_home=None, test_split=0.3, verbose=False) -> Dataset:
|
||||
"""
|
||||
Loads a UCI multiclass dataset as an instance of :class:`quapy.data.base.Dataset`, as used in
|
||||
`Pérez-Gállego, P., Quevedo, J. R., & del Coz, J. J. (2017).
|
||||
Using ensembles for problems with characterizable changes in data distribution: A case study on quantification.
|
||||
Information Fusion, 34, 87-100. <https://www.sciencedirect.com/science/article/pii/S1566253516300628>`_
|
||||
and
|
||||
`Pérez-Gállego, P., Castano, A., Quevedo, J. R., & del Coz, J. J. (2019).
|
||||
Dynamic ensemble selection for quantification tasks.
|
||||
Information Fusion, 45, 1-15. <https://www.sciencedirect.com/science/article/pii/S1566253517303652>`_.
|
||||
The datasets do not come with a predefined train-test split (see :meth:`fetch_UCIMulticlassLabelledCollection` for further
|
||||
information on how to use these collections), and so a train-test split is generated at desired proportion.
|
||||
Loads a UCI multiclass dataset as an instance of :class:`quapy.data.base.Dataset`.
|
||||
|
||||
The list of available datasets is taken from https://archive.ics.uci.edu/, following these criteria:
|
||||
- The dataset has more than 1000 instances
|
||||
- The dataset is suited for classification
|
||||
- the dataset has more than two classes
|
||||
|
||||
The list of valid dataset names can be accessed in `quapy.data.datasets.UCI_MULTICLASS_DATASETS`
|
||||
|
||||
:param dataset_name: a dataset name
|
||||
:param data_home: specify the quapy home directory where collections will be dumped (leave empty to use the default
|
||||
~/quay_data/ directory)
|
||||
:param test_split: proportion of documents to be included in the test set. The rest conforms the training set
|
||||
:param verbose: set to True (default is False) to get information (from the UCI ML repository) about the datasets
|
||||
:param verbose: set to True (default is False) to get information (stats) about the dataset
|
||||
:return: a :class:`quapy.data.base.Dataset` instance
|
||||
"""
|
||||
data = fetch_UCIMulticlassLabelledCollection(dataset_name, data_home, verbose)
|
||||
|
@ -582,30 +580,23 @@ def fetch_UCIMulticlassDataset(dataset_name, data_home=None, test_split=0.3, ver
|
|||
|
||||
def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=False) -> LabelledCollection:
|
||||
"""
|
||||
Loads a UCI multiclass collection as an instance of :class:`quapy.data.base.LabelledCollection`, as used in
|
||||
`Pérez-Gállego, P., Quevedo, J. R., & del Coz, J. J. (2017).
|
||||
Using ensembles for problems with characterizable changes in data distribution: A case study on quantification.
|
||||
Information Fusion, 34, 87-100. <https://www.sciencedirect.com/science/article/pii/S1566253516300628>`_
|
||||
and
|
||||
`Pérez-Gállego, P., Castano, A., Quevedo, J. R., & del Coz, J. J. (2019).
|
||||
Dynamic ensemble selection for quantification tasks.
|
||||
Information Fusion, 45, 1-15. <https://www.sciencedirect.com/science/article/pii/S1566253517303652>`_.
|
||||
The datasets do not come with a predefined train-test split, and so Pérez-Gállego et al. adopted a 5FCVx2 evaluation
|
||||
protocol, meaning that each collection was used to generate two rounds (hence the x2) of 5 fold cross validation.
|
||||
This can be reproduced by using :meth:`quapy.data.base.Dataset.kFCV`, e.g.:
|
||||
Loads a UCI multiclass collection as an instance of :class:`quapy.data.base.LabelledCollection`.
|
||||
|
||||
It needs the library `ucimlrepo` for downloading the datasets from https://archive.ics.uci.edu/.
|
||||
|
||||
>>> import quapy as qp
|
||||
>>> collection = qp.datasets.fetch_UCIMulticlassLabelledCollection("dry-bean")
|
||||
>>> for data in qp.domains.Dataset.kFCV(collection, nfolds=5, nrepeats=2):
|
||||
>>> dataset = qp.datasets.fetch_UCIMulticlassLabelledCollection("dry-bean")
|
||||
>>> ...
|
||||
|
||||
The list of valid dataset names can be accessed in `quapy.data.datasets.UCI_MULTICLASS_DATASETS`
|
||||
|
||||
The datasets are downloaded only once and pickled into disk, saving time for consecutive calls.
|
||||
|
||||
:param dataset_name: a dataset name
|
||||
:param data_home: specify the quapy home directory where collections will be dumped (leave empty to use the default
|
||||
:param data_home: specify the quapy home directory where the dataset will be dumped (leave empty to use the default
|
||||
~/quay_data/ directory)
|
||||
:param test_split: proportion of documents to be included in the test set. The rest conforms the training set
|
||||
:param verbose: set to True (default is False) to get information (from the UCI ML repository) about the datasets
|
||||
:param verbose: set to True (default is False) to get information (stats) about the dataset
|
||||
:return: a :class:`quapy.data.base.LabelledCollection` instance
|
||||
"""
|
||||
assert dataset_name in UCI_MULTICLASS_DATASETS, \
|
||||
|
@ -634,19 +625,18 @@ def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=
|
|||
print(f'Loading UCI Muticlass {dataset_name} ({fullname})')
|
||||
|
||||
file = join(data_home,'uci_multiclass',dataset_name+'.pkl')
|
||||
if os.path.exists(file):
|
||||
with open(file, 'rb') as file:
|
||||
data = pickle.load(file)
|
||||
else:
|
||||
data = fetch_ucirepo(id=identifier)
|
||||
|
||||
def download(id):
|
||||
data = fetch_ucirepo(id=id)
|
||||
X, y = data['data']['features'].to_numpy(), data['data']['targets'].to_numpy().squeeze()
|
||||
data = LabelledCollection(X, y)
|
||||
os.makedirs(os.path.dirname(file), exist_ok=True)
|
||||
with open(file, 'wb') as file:
|
||||
pickle.dump(data, file)
|
||||
classes = np.sort(np.unique(y))
|
||||
y = np.searchsorted(classes, y)
|
||||
return LabelledCollection(X,y)
|
||||
|
||||
data = pickled_resource(file, download, identifier)
|
||||
|
||||
data.stats()
|
||||
if verbose:
|
||||
data.stats()
|
||||
return data
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue