import pickle import numpy as np from sklearn.linear_model import LogisticRegression import os import sys import pandas as pd import quapy as qp from quapy.method.aggregative import EMQ, DistributionMatching, PACC, ACC, CC, PCC, HDy, OneVsAllAggregative from method_kdey import KDEy from method_dirichlety import DIRy from quapy.model_selection import GridSearchQ from quapy.protocol import UPP SEED=1 if __name__ == '__main__': qp.environ['SAMPLE_SIZE'] = 100 qp.environ['N_JOBS'] = -1 n_bags_val = 250 n_bags_test = 1000 result_dir = f'results_tweet_{n_bags_test}' optim = 'mae' os.makedirs(result_dir, exist_ok=True) hyper_LR = { 'classifier__C': np.logspace(-4,4,9), 'classifier__class_weight': ['balanced', None] } for method in ['KDE-nomonte', 'KDE-monte2', 'SLD', 'KDE-kfcv']:# , 'DIR', 'DM', 'HDy-OvA', 'CC', 'ACC', 'PCC']: #if os.path.exists(result_path): # print('Result already exit. Nothing to do') # sys.exit(0) result_path = f'{result_dir}/{method}' if os.path.exists(result_path+'.dataframe'): print(f'result file {result_path} already exist; skipping') continue with open(result_path+'.csv', 'at') as csv: csv.write(f'Method\tDataset\tMAE\tMRAE\tKLD\n') # four semeval dataset share the training, so it is useless to optimize hyperparameters four times; # this variable controls that the mod sel has already been done, and skip this otherwise semeval_trained = False for dataset in qp.datasets.TWITTER_SENTIMENT_DATASETS_TEST: print('init', dataset) with qp.util.temp_seed(SEED): is_semeval = dataset.startswith('semeval') if not is_semeval or not semeval_trained: if method == 'KDE': param_grid = { 'bandwidth': np.linspace(0.001, 0.2, 21), 'classifier__C': np.logspace(-4,4,9), 'classifier__class_weight': ['balanced', None] } quantifier = KDEy(LogisticRegression(), target='max_likelihood') elif method == 'KDE-kfcv': param_grid = { 'bandwidth': np.linspace(0.001, 0.2, 21), 'classifier__C': np.logspace(-4,4,9), 'classifier__class_weight': ['balanced', None] } quantifier = KDEy(LogisticRegression(), target='max_likelihood', val_split=10) elif method in ['KDE-monte2']: param_grid = { 'bandwidth': np.linspace(0.001, 0.2, 21), } quantifier = KDEy(LogisticRegression(), target='min_divergence') elif method in ['KDE-nomonte']: param_grid = { 'bandwidth': np.linspace(0.001, 0.2, 21), } quantifier = KDEy(LogisticRegression(), target='max_likelihood') elif method == 'DIR': param_grid = hyper_LR quantifier = DIRy(LogisticRegression()) elif method == 'SLD': param_grid = hyper_LR quantifier = EMQ(LogisticRegression()) elif method == 'PACC': param_grid = hyper_LR quantifier = PACC(LogisticRegression()) elif method == 'PACC-kfcv': param_grid = hyper_LR quantifier = PACC(LogisticRegression(), val_split=10) elif method == 'PCC': param_grid = hyper_LR quantifier = PCC(LogisticRegression()) elif method == 'ACC': param_grid = hyper_LR quantifier = ACC(LogisticRegression()) elif method == 'CC': param_grid = hyper_LR quantifier = CC(LogisticRegression()) elif method == 'HDy-OvA': param_grid = { 'binary_quantifier__classifier__C': np.logspace(-4,4,9), 'binary_quantifier__classifier__class_weight': ['balanced', None] } quantifier = OneVsAllAggregative(HDy(LogisticRegression())) elif method == 'DM': param_grid = { 'nbins': [5,10,15], 'classifier__C': np.logspace(-4,4,9), 'classifier__class_weight': ['balanced', None] } quantifier = DistributionMatching(LogisticRegression()) else: raise NotImplementedError('unknown method', method) # model selection data = qp.datasets.fetch_twitter(dataset, min_df=3, pickle=True, for_model_selection=True) protocol = UPP(data.test, repeats=n_bags_val) modsel = GridSearchQ(quantifier, param_grid, protocol, refit=False, n_jobs=-1, verbose=1, error=optim) modsel.fit(data.training) print(f'best params {modsel.best_params_}') pickle.dump(modsel.best_params_, open(f'{result_dir}/{method}_{dataset}.hyper.pkl', 'wb'), pickle.HIGHEST_PROTOCOL) quantifier = modsel.best_model() if is_semeval: semeval_trained = True else: print(f'model selection for {dataset} already done; skipping') data = qp.datasets.fetch_twitter(dataset, min_df=3, pickle=True, for_model_selection=False) quantifier.fit(data.training) protocol = UPP(data.test, repeats=n_bags_test) report = qp.evaluation.evaluation_report(quantifier, protocol, error_metrics=['mae', 'mrae', 'kld'], verbose=True) report.to_csv(result_path+'.dataframe') means = report.mean() csv.write(f'{method}\t{data.name}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\n') csv.flush() df = pd.read_csv(result_path+'.csv', sep='\t') pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE", "MRAE"]) print(pv)