from abc import ABCMeta, abstractmethod from copy import deepcopy from sklearn.base import BaseEstimator import quapy as qp from quapy.data import LabelledCollection # Base Quantifier abstract class # ------------------------------------ class BaseQuantifier(BaseEstimator): """ Abstract Quantifier. A quantifier is defined as an object of a class that implements the method :meth:`fit` on :class:`quapy.data.base.LabelledCollection`, the method :meth:`quantify`, and the :meth:`set_params` and :meth:`get_params` for model selection (see :meth:`quapy.model_selection.GridSearchQ`) """ @abstractmethod def fit(self, data: LabelledCollection): """ Trains a quantifier. :param data: a :class:`quapy.data.base.LabelledCollection` consisting of the training data :return: self """ ... @abstractmethod def quantify(self, instances): """ Generate class prevalence estimates for the sample's instances :param instances: array-like :return: `np.ndarray` of shape `(self.n_classes_,)` with class prevalence estimates. """ ... # @abstractmethod # def set_params(self, **parameters): # """ # Set the parameters of the quantifier. # # :param parameters: dictionary of param-value pairs # """ # ... # # @abstractmethod # def get_params(self, deep=True): # """ # Return the current parameters of the quantifier. # # :param deep: for compatibility with sklearn # :return: a dictionary of param-value pairs # """ # ... class BinaryQuantifier(BaseQuantifier): """ Abstract class of binary quantifiers, i.e., quantifiers estimating class prevalence values for only two classes (typically, to be interpreted as one class and its complement). """ def _check_binary(self, data: LabelledCollection, quantifier_name): assert data.binary, f'{quantifier_name} works only on problems of binary classification. ' \ f'Use the class OneVsAll to enable {quantifier_name} work on single-label data.' class OneVsAllGeneric: """ Allows any binary quantifier to perform quantification on single-label datasets. The method maintains one binary quantifier for each class, and then l1-normalizes the outputs so that the class prevelence values sum up to 1. """ def __init__(self, binary_quantifier, n_jobs=None): assert isinstance(binary_quantifier, BaseQuantifier), \ f'{binary_quantifier} does not seem to be a Quantifier' self.binary_quantifier = binary_quantifier self.n_jobs = qp.get_njobs(n_jobs) def fit(self, data: LabelledCollection, **kwargs): assert not data.binary, \ f'{self.__class__.__name__} expect non-binary data' self.class_quatifier = {c: deepcopy(self.binary_quantifier) for c in data.classes_} Parallel(n_jobs=self.n_jobs, backend='threading')( delayed(self._delayed_binary_fit)(c, self.class_quatifier, data, **kwargs) for c in data.classes_ ) return self def quantify(self, X, *args): prevalences = np.asarray( Parallel(n_jobs=self.n_jobs, backend='threading')( delayed(self._delayed_binary_predict)(c, self.class_quatifier, X) for c in self.classes ) ) return F.normalize_prevalence(prevalences) @property def classes(self): return sorted(self.class_quatifier.keys()) def set_params(self, **parameters): self.binary_quantifier.set_params(**parameters) def get_params(self, deep=True): return self.binary_quantifier.get_params() def _delayed_binary_predict(self, c, quantifiers, X): return quantifiers[c].quantify(X)[:, 1] # the mean is the estimation for the positive class prevalence def _delayed_binary_fit(self, c, quantifiers, data, **kwargs): bindata = LabelledCollection(data.instances, data.labels == c, n_classes=2) quantifiers[c].fit(bindata, **kwargs)