import argparse import pickle from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression as LR from quapy.method.aggregative import * from quapy.method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as MLPE import quapy.functional as F from data import * import os import constants # LeQua official baselines for task T1A (Binary/Vector) and T1B (Multiclass/Vector) # ========================================================= def baselines(): yield CC(LR(n_jobs=-1)), "CC" # yield ACC(LR(n_jobs=-1)), "ACC" # yield PCC(LR(n_jobs=-1)), "PCC" yield PACC(LR(n_jobs=-1)), "PACC" yield EMQ(CalibratedClassifierCV(LR(), n_jobs=-1)), "SLD" # yield HDy(LR(n_jobs=-1)) if args.task == 'T1A' else OneVsAll(HDy(LR()), n_jobs=-1), "HDy" # yield MLPE(), "MLPE" def main(args): models_path = qp.util.create_if_not_exist(os.path.join(args.modeldir, args.task)) path_dev_vectors = os.path.join(args.datadir, 'dev_samples') path_dev_prevs = os.path.join(args.datadir, 'dev_prevalences.txt') path_train = os.path.join(args.datadir, 'training_data.txt') qp.environ['SAMPLE_SIZE'] = constants.SAMPLE_SIZE[args.task] if args.task in {'T1A', 'T1B'}: train = LabelledCollection.load(path_train, load_vector_documents) def gen_samples(): return gen_load_samples(path_dev_vectors, ground_truth_path=path_dev_prevs, load_fn=load_vector_documents) else: train = LabelledCollection.load(path_train, load_raw_documents) tfidf = TfidfVectorizer(min_df=5, sublinear_tf=True, ngram_range=(1, 2)) train.instances = tfidf.fit_transform(*train.Xy) def gen_samples(): return gen_load_samples(path_dev_vectors, ground_truth_path=path_dev_prevs, load_fn=load_raw_documents, vectorizer=tfidf) print(f'number of classes: {len(train.classes_)}') print(f'number of training documents: {len(train)}') print(f'training prevalence: {F.strprev(train.prevalence())}') print(f'training matrix shape: {train.instances.shape}') param_grid = { 'C': np.logspace(-3, 3, 7), 'class_weight': ['balanced', None] } param_grid = { 'C': [0.01], 'class_weight': ['balanced'] } for quantifier, q_name in baselines(): print(f'{q_name}: Model selection') quantifier = qp.model_selection.GridSearchQ( quantifier, param_grid, sample_size=None, protocol='gen', error=qp.error.mrae, refit=False, verbose=True ).fit(train, gen_samples) print(f'{q_name} got MRAE={quantifier.best_score_:.5f} (hyper-params: {quantifier.best_params_})') model_path = os.path.join(models_path, q_name+'.pkl') print(f'saving model in {model_path}') pickle.dump(quantifier.best_model(), open(model_path, 'wb'), protocol=pickle.HIGHEST_PROTOCOL) if __name__ == '__main__': parser = argparse.ArgumentParser(description='LeQua2022 baselines') parser.add_argument('task', metavar='TASK', type=str, choices=['T1A', 'T1B', 'T2A', 'T2B'], help='Task name (T1A, T1B, T2A, T2B)') parser.add_argument('datadir', metavar='DATA-PATH', type=str, help='Path of the directory containing "dev_prevalences.txt", "training_data.txt", and ' 'the directory "dev_samples"') parser.add_argument('modeldir', metavar='MODEL-PATH', type=str, help='Path where to save the models. ' 'A subdirectory named will be automatically created.') args = parser.parse_args() if not os.path.exists(args.datadir): raise FileNotFoundError(f'path {args.datadir} does not exist') if not os.path.isdir(args.datadir): raise ValueError(f'path {args.datadir} is not a valid directory') if not os.path.exists(os.path.join(args.datadir, "dev_prevalences.txt")): raise FileNotFoundError(f'path {args.datadir} does not contain "dev_prevalences.txt" file') if not os.path.exists(os.path.join(args.datadir, "training_data.txt")): raise FileNotFoundError(f'path {args.datadir} does not contain "training_data.txt" file') if not os.path.exists(os.path.join(args.datadir, "dev_samples")): raise FileNotFoundError(f'path {args.datadir} does not contain "dev_samples" folder') main(args)