import argparse import quapy as qp from data import ResultSubmission import os import pickle from tqdm import tqdm from data import gen_load_samples from glob import glob import constants """ LeQua2022 prediction script """ def main(args): # check the number of samples nsamples = len(glob(os.path.join(args.samples, '*.txt'))) if nsamples not in {constants.DEV_SAMPLES, constants.TEST_SAMPLES}: print(f'Warning: The number of samples does neither coincide with the expected number of ' f'dev samples ({constants.DEV_SAMPLES}) nor with the expected number of ' f'test samples ({constants.TEST_SAMPLES}).') # load pickled model model = pickle.load(open(args.model, 'rb')) # predictions predictions = ResultSubmission() for sampleid, sample in tqdm(gen_load_samples(args.samples, return_id=True, load_fn=), desc='predicting', total=nsamples): predictions.add(sampleid, model.quantify(sample)) # saving qp.util.create_parent_dir(args.output) predictions.dump(args.output) if __name__=='__main__': parser = argparse.ArgumentParser(description='LeQua2022 prediction script') parser.add_argument('model', metavar='MODEL-PATH', type=str, help='Path of saved model') parser.add_argument('samples', metavar='SAMPLES-PATH', type=str, help='Path to the directory containing the samples') parser.add_argument('output', metavar='PREDICTIONS-PATH', type=str, help='Path where to store the predictions file') parser.add_argument('nf', metavar='NUM-FEATURES', type=int, help='Number of features seen during training') args = parser.parse_args() if not os.path.exists(args.samples): raise FileNotFoundError(f'path {args.samples} does not exist') if not os.path.isdir(args.samples): raise ValueError(f'path {args.samples} is not a valid directory') main(args)