from copy import deepcopy import quapy as qp import numpy as np import itertools from collections.abc import Generator from contextlib import ExitStack from abc import ABCMeta, abstractmethod from quapy.data import LabelledCollection import quapy.functional as F from tqdm import tqdm from os.path import exists from glob import glob class AbstractProtocol(metaclass=ABCMeta): @abstractmethod def __call__(self): """ Implements the protocol. Yields one sample at a time :return: yields one sample at a time """ ... def total(self): """ Indicates the total number of samples that the protocol generates. :return: The number of samples to generate if known, or `None` otherwise. """ return None class AbstractStochasticSeededProtocol(AbstractProtocol): """ An AbstractStochasticSeededProtocol is a protocol that generates, via any random procedure (e.g., via random sapling), sequences of `LabelledCollection` samples. The protocol abstraction enforces the object to be instantiated using a seed, so that the sequence can be completely replicated. In order to make this functionality possible, the classes extending this abstraction need to implement only two functions, :meth:`samples_parameters` which generates all the parameters needed for extracting the samples, and :meth:`sample` that, given some parameters as input, deterministically generates a sample. :param seed: the seed for allowing to replicate any sequence of samples. Default is None, meaning that the sequence will be different every time the protocol is called. """ _random_seed = -1 # means "not set" def __init__(self, seed=None): self.random_seed = seed @property def random_seed(self): return self._random_seed @random_seed.setter def random_seed(self, seed): self._random_seed = seed @abstractmethod def samples_parameters(self): """ This function has to return all the necessary parameters to replicate the samples :return: a list of parameters, each of which serves to deterministically generate a sample """ ... @abstractmethod def sample(self, params): """ Extract one sample determined by the given parameters :param params: all the necessary parameters to generate a sample :return: one sample (the same sample has to be generated for the same parameters) """ ... def __call__(self): with ExitStack() as stack: if self.random_seed == -1: raise ValueError('The random seed has never been initialized. ' 'Set it to None not to impose replicability.') if self.random_seed is not None: stack.enter_context(qp.util.temp_seed(self.random_seed)) for params in self.samples_parameters(): yield self.sample(params) class OnLabelledCollectionProtocol: def get_labelled_collection(self): return self.data def on_preclassified_instances(self, pre_classifications, in_place=False): assert len(pre_classifications) == len(self.data), \ f'error: the pre-classified data has different shape ' \ f'(expected {len(self.data)}, found {len(pre_classifications)})' if in_place: self.data.instances = pre_classifications return self else: new = deepcopy(self) return new.on_preclassified_instances(pre_classifications, in_place=True) class LoadSamplesFromDirectory(AbstractProtocol): def __init__(self, folder_path, loader_fn, classes=None, **loader_kwargs): assert exists(folder_path), f'folder {folder_path} does not exist' assert callable(loader_fn), f'the passed load_fn does not seem to be callable' self.folder_path = folder_path self.loader_fn = loader_fn self.classes = classes self.loader_kwargs = loader_kwargs self._list_files = None def __call__(self): for file in self.list_files: yield LabelledCollection.load(file, loader_func=self.loader_fn, classes=self.classes, **self.loader_kwargs) @property def list_files(self): if self._list_files is None: self._list_files = sorted(glob(self.folder_path, '*')) return self._list_files def total(self): return len(self.list_files) class APP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol): """ Implementation of the artificial prevalence protocol (APP). The APP consists of exploring a grid of prevalence values containing `n_prevalences` points (e.g., [0, 0.05, 0.1, 0.15, ..., 1], if `n_prevalences=21`), and generating all valid combinations of prevalence values for all classes (e.g., for 3 classes, samples with [0, 0, 1], [0, 0.05, 0.95], ..., [1, 0, 0] prevalence values of size `sample_size` will be yielded). The number of samples for each valid combination of prevalence values is indicated by `repeats`. :param data: a `LabelledCollection` from which the samples will be drawn :param sample_size: integer, number of instances in each sample :param n_prevalences: the number of equidistant prevalence points to extract from the [0,1] interval for the grid (default is 21) :param repeats: number of copies for each valid prevalence vector (default is 10) :param random_seed: allows replicating samples across runs (default None) """ def __init__(self, data:LabelledCollection, sample_size, n_prevalences=21, repeats=10, random_seed=None): super(APP, self).__init__(random_seed) self.data = data self.sample_size = sample_size self.n_prevalences = n_prevalences self.repeats = repeats def prevalence_grid(self): """ Generates vectors of prevalence values from an exhaustive grid of prevalence values. The number of prevalence values explored for each dimension depends on `n_prevalences`, so that, if, for example, `n_prevalences=11` then the prevalence values of the grid are taken from [0, 0.1, 0.2, ..., 0.9, 1]. Only valid prevalence distributions are returned, i.e., vectors of prevalence values that sum up to 1. For each valid vector of prevalence values, `repeat` copies are returned. The vector of prevalence values can be implicit (by setting `return_constrained_dim=False`), meaning that the last dimension (which is constrained to 1 - sum of the rest) is not returned (note that, quite obviously, in this case the vector does not sum up to 1). Note that this method is deterministic, i.e., there is no random sampling anywhere. :return: a `np.ndarray` of shape `(n, dimensions)` if `return_constrained_dim=True` or of shape `(n, dimensions-1)` if `return_constrained_dim=False`, where `n` is the number of valid combinations found in the grid multiplied by `repeat` """ dimensions = self.data.n_classes s = np.linspace(0., 1., self.n_prevalences, endpoint=True) s = [s] * (dimensions - 1) prevs = [p for p in itertools.product(*s, repeat=1) if (sum(p) <= 1.0)] prevs = np.asarray(prevs).reshape(len(prevs), -1) if self.repeats > 1: prevs = np.repeat(prevs, self.repeats, axis=0) return prevs def samples_parameters(self): indexes = [] for prevs in self.prevalence_grid(): index = self.data.sampling_index(self.sample_size, *prevs) indexes.append(index) return indexes def sample(self, index): return self.data.sampling_from_index(index) def total(self): return F.num_prevalence_combinations(self.n_prevalences, self.data.n_classes, self.repeats) class NPP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol): """ A generator of samples that implements the natural prevalence protocol (NPP). The NPP consists of drawing samples uniformly at random, therefore approximately preserving the natural prevalence of the collection. :param data: a `LabelledCollection` from which the samples will be drawn :param sample_size: integer, the number of instances in each sample :param repeats: the number of samples to generate. Default is 100. :param random_seed: allows replicating samples across runs (default None) """ def __init__(self, data:LabelledCollection, sample_size, repeats=100, random_seed=None): super(NPP, self).__init__(random_seed) self.data = data self.sample_size = sample_size self.repeats = repeats self.random_seed = random_seed def samples_parameters(self): indexes = [] for _ in range(self.repeats): index = self.data.uniform_sampling_index(self.sample_size) indexes.append(index) return indexes def sample(self, index): return self.data.sampling_from_index(index) def total(self): return self.repeats class USimplexPP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol): """ A variant of :class:`APP` that, instead of using a grid of equidistant prevalence values, relies on the Kraemer algorithm for sampling unit (k-1)-simplex uniformly at random, with k the number of classes. This protocol covers the entire range of prevalence values in a statistical sense, i.e., unlike APP there is no guarantee that it is covered precisely equally for all classes, but it is preferred in cases in which the number of possible combinations of the grid values of APP makes this endeavour intractable. :param data: a `LabelledCollection` from which the samples will be drawn :param sample_size: integer, the number of instances in each sample :param repeats: the number of samples to generate. Default is 100. :param random_seed: allows replicating samples across runs (default None) """ def __init__(self, data: LabelledCollection, sample_size, repeats=100, random_seed=None): super(USimplexPP, self).__init__(random_seed) self.data = data self.sample_size = sample_size self.repeats = repeats self.random_seed = random_seed def samples_parameters(self): indexes = [] for prevs in F.uniform_simplex_sampling(n_classes=self.data.n_classes, size=self.repeats): index = self.data.sampling_index(self.sample_size, *prevs) indexes.append(index) return indexes def sample(self, index): return self.data.sampling_from_index(index) def total(self): return self.repeats class CovariateShiftPP(AbstractStochasticSeededProtocol): """ Generates mixtures of two domains (A and B) at controlled rates, but preserving the original class prevalence. :param domainA: :param domainB: :param sample_size: :param repeats: :param prevalence: the prevalence to preserv along the mixtures. If specified, should be an array containing one prevalence value (positive float) for each class and summing up to one. If not specified, the prevalence will be taken from the domain A (default). :param mixture_points: an integer indicating the number of points to take from a linear scale (e.g., 21 will generate the mixture points [1, 0.95, 0.9, ..., 0]), or the array of mixture values itself. the specific points :param random_seed: """ def __init__( self, domainA: LabelledCollection, domainB: LabelledCollection, sample_size, repeats=1, prevalence=None, mixture_points=11, random_seed=None): super(CovariateShiftPP, self).__init__(random_seed) self.A = domainA self.B = domainB self.sample_size = sample_size self.repeats = repeats if prevalence is None: self.prevalence = domainA.prevalence() else: self.prevalence = np.asarray(prevalence) assert len(self.prevalence) == domainA.n_classes, \ f'wrong shape for the vector prevalence (expected {domainA.n_classes})' assert F.check_prevalence_vector(self.prevalence), \ f'the prevalence vector is not valid (either it contains values outside [0,1] or does not sum up to 1)' if isinstance(mixture_points, int): self.mixture_points = np.linspace(0, 1, mixture_points)[::-1] else: self.mixture_points = np.asarray(mixture_points) assert all(np.logical_and(self.mixture_points >= 0, self.mixture_points<=1)), \ 'mixture_model datatype not understood (expected int or a sequence of real values in [0,1])' self.random_seed = random_seed def samples_parameters(self): indexesA, indexesB = [], [] for propA in self.mixture_points: for _ in range(self.repeats): nA = int(np.round(self.sample_size * propA)) nB = self.sample_size-nA sampleAidx = self.A.sampling_index(nA, *self.prevalence) sampleBidx = self.B.sampling_index(nB, *self.prevalence) indexesA.append(sampleAidx) indexesB.append(sampleBidx) return list(zip(indexesA, indexesB)) def sample(self, indexes): indexesA, indexesB = indexes sampleA = self.A.sampling_from_index(indexesA) sampleB = self.B.sampling_from_index(indexesB) return sampleA+sampleB def total(self): return self.repeats * len(self.mixture_points)