forked from moreo/QuaPy
365 lines
15 KiB
Python
365 lines
15 KiB
Python
import itertools
|
|
from collections import defaultdict
|
|
from typing import Union, Callable
|
|
|
|
import scipy
|
|
import numpy as np
|
|
|
|
|
|
def prevalence_linspace(n_prevalences=21, repeats=1, smooth_limits_epsilon=0.01):
|
|
"""
|
|
Produces an array of uniformly separated values of prevalence.
|
|
By default, produces an array of 21 prevalence values, with
|
|
step 0.05 and with the limits smoothed, i.e.:
|
|
[0.01, 0.05, 0.10, 0.15, ..., 0.90, 0.95, 0.99]
|
|
|
|
:param n_prevalences: the number of prevalence values to sample from the [0,1] interval (default 21)
|
|
:param repeats: number of times each prevalence is to be repeated (defaults to 1)
|
|
:param smooth_limits_epsilon: the quantity to add and subtract to the limits 0 and 1
|
|
:return: an array of uniformly separated prevalence values
|
|
"""
|
|
p = np.linspace(0., 1., num=n_prevalences, endpoint=True)
|
|
p[0] += smooth_limits_epsilon
|
|
p[-1] -= smooth_limits_epsilon
|
|
if p[0] > p[1]:
|
|
raise ValueError(f'the smoothing in the limits is greater than the prevalence step')
|
|
if repeats > 1:
|
|
p = np.repeat(p, repeats)
|
|
return p
|
|
|
|
|
|
def prevalence_from_labels(labels, classes):
|
|
"""
|
|
Computed the prevalence values from a vector of labels.
|
|
|
|
:param labels: array-like of shape `(n_instances)` with the label for each instance
|
|
:param classes: the class labels. This is needed in order to correctly compute the prevalence vector even when
|
|
some classes have no examples.
|
|
:return: an ndarray of shape `(len(classes))` with the class prevalence values
|
|
"""
|
|
if labels.ndim != 1:
|
|
raise ValueError(f'param labels does not seem to be a ndarray of label predictions')
|
|
unique, counts = np.unique(labels, return_counts=True)
|
|
by_class = defaultdict(lambda:0, dict(zip(unique, counts)))
|
|
prevalences = np.asarray([by_class[class_] for class_ in classes], dtype=float)
|
|
prevalences /= prevalences.sum()
|
|
return prevalences
|
|
|
|
|
|
def prevalence_from_probabilities(posteriors, binarize: bool = False):
|
|
"""
|
|
Returns a vector of prevalence values from a matrix of posterior probabilities.
|
|
|
|
:param posteriors: array-like of shape `(n_instances, n_classes,)` with posterior probabilities for each class
|
|
:param binarize: set to True (default is False) for computing the prevalence values on crisp decisions (i.e.,
|
|
converting the vectors of posterior probabilities into class indices, by taking the argmax).
|
|
:return: array of shape `(n_classes,)` containing the prevalence values
|
|
"""
|
|
if posteriors.ndim != 2:
|
|
raise ValueError(f'param posteriors does not seem to be a ndarray of posteior probabilities')
|
|
if binarize:
|
|
predictions = np.argmax(posteriors, axis=-1)
|
|
return prevalence_from_labels(predictions, np.arange(posteriors.shape[1]))
|
|
else:
|
|
prevalences = posteriors.mean(axis=0)
|
|
prevalences /= prevalences.sum()
|
|
return prevalences
|
|
|
|
|
|
def as_binary_prevalence(positive_prevalence: Union[float, np.ndarray], clip_if_necessary=False):
|
|
"""
|
|
Helper that, given a float representing the prevalence for the positive class, returns a np.ndarray of two
|
|
values representing a binary distribution.
|
|
|
|
:param positive_prevalence: prevalence for the positive class
|
|
:param clip_if_necessary: if True, clips the value in [0,1] in order to guarantee the resulting distribution
|
|
is valid. If False, it then checks that the value is in the valid range, and raises an error if not.
|
|
:return: np.ndarray of shape `(2,)`
|
|
"""
|
|
if clip_if_necessary:
|
|
positive_prevalence = np.clip(positive_prevalence, 0, 1)
|
|
else:
|
|
assert 0 <= positive_prevalence <= 1, 'the value provided is not a valid prevalence for the positive class'
|
|
return np.asarray([1-positive_prevalence, positive_prevalence]).T
|
|
|
|
|
|
|
|
def HellingerDistance(P, Q) -> float:
|
|
"""
|
|
Computes the Hellingher Distance (HD) between (discretized) distributions `P` and `Q`.
|
|
The HD for two discrete distributions of `k` bins is defined as:
|
|
|
|
.. math::
|
|
HD(P,Q) = \\frac{ 1 }{ \\sqrt{ 2 } } \\sqrt{ \\sum_{i=1}^k ( \\sqrt{p_i} - \\sqrt{q_i} )^2 }
|
|
|
|
:param P: real-valued array-like of shape `(k,)` representing a discrete distribution
|
|
:param Q: real-valued array-like of shape `(k,)` representing a discrete distribution
|
|
:return: float
|
|
"""
|
|
return np.sqrt(np.sum((np.sqrt(P) - np.sqrt(Q))**2))
|
|
|
|
|
|
def TopsoeDistance(P, Q, epsilon=1e-20):
|
|
"""
|
|
Topsoe distance between two (discretized) distributions `P` and `Q`.
|
|
The Topsoe distance for two discrete distributions of `k` bins is defined as:
|
|
|
|
.. math::
|
|
Topsoe(P,Q) = \\sum_{i=1}^k \\left( p_i \\log\\left(\\frac{ 2 p_i + \\epsilon }{ p_i+q_i+\\epsilon }\\right) +
|
|
q_i \\log\\left(\\frac{ 2 q_i + \\epsilon }{ p_i+q_i+\\epsilon }\\right) \\right)
|
|
|
|
:param P: real-valued array-like of shape `(k,)` representing a discrete distribution
|
|
:param Q: real-valued array-like of shape `(k,)` representing a discrete distribution
|
|
:return: float
|
|
"""
|
|
return np.sum(P*np.log((2*P+epsilon)/(P+Q+epsilon)) + Q*np.log((2*Q+epsilon)/(P+Q+epsilon)))
|
|
|
|
|
|
def uniform_prevalence_sampling(n_classes, size=1):
|
|
"""
|
|
Implements the `Kraemer algorithm <http://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf>`_
|
|
for sampling uniformly at random from the unit simplex. This implementation is adapted from this
|
|
`post <https://cs.stackexchange.com/questions/3227/uniform-sampling-from-a-simplex>_`.
|
|
|
|
:param n_classes: integer, number of classes (dimensionality of the simplex)
|
|
:param size: number of samples to return
|
|
:return: `np.ndarray` of shape `(size, n_classes,)` if `size>1`, or of shape `(n_classes,)` otherwise
|
|
"""
|
|
if n_classes == 2:
|
|
u = np.random.rand(size)
|
|
u = np.vstack([1-u, u]).T
|
|
else:
|
|
u = np.random.rand(size, n_classes-1)
|
|
u.sort(axis=-1)
|
|
_0s = np.zeros(shape=(size, 1))
|
|
_1s = np.ones(shape=(size, 1))
|
|
a = np.hstack([_0s, u])
|
|
b = np.hstack([u, _1s])
|
|
u = b-a
|
|
if size == 1:
|
|
u = u.flatten()
|
|
return u
|
|
|
|
|
|
uniform_simplex_sampling = uniform_prevalence_sampling
|
|
|
|
|
|
def strprev(prevalences, prec=3):
|
|
"""
|
|
Returns a string representation for a prevalence vector. E.g.,
|
|
|
|
>>> strprev([1/3, 2/3], prec=2)
|
|
>>> '[0.33, 0.67]'
|
|
|
|
:param prevalences: a vector of prevalence values
|
|
:param prec: float precision
|
|
:return: string
|
|
"""
|
|
return '['+ ', '.join([f'{p:.{prec}f}' for p in prevalences]) + ']'
|
|
|
|
|
|
def adjusted_quantification(prevalence_estim, tpr, fpr, clip=True):
|
|
"""
|
|
Implements the adjustment of ACC and PACC for the binary case. The adjustment for a prevalence estimate of the
|
|
positive class `p` comes down to computing:
|
|
|
|
.. math::
|
|
ACC(p) = \\frac{ p - fpr }{ tpr - fpr }
|
|
|
|
:param prevalence_estim: float, the estimated value for the positive class
|
|
:param tpr: float, the true positive rate of the classifier
|
|
:param fpr: float, the false positive rate of the classifier
|
|
:param clip: set to True (default) to clip values that might exceed the range [0,1]
|
|
:return: float, the adjusted count
|
|
"""
|
|
|
|
den = tpr - fpr
|
|
if den == 0:
|
|
den += 1e-8
|
|
adjusted = (prevalence_estim - fpr) / den
|
|
if clip:
|
|
adjusted = np.clip(adjusted, 0., 1.)
|
|
return adjusted
|
|
|
|
|
|
def normalize_prevalence(prevalences):
|
|
"""
|
|
Normalize a vector or matrix of prevalence values. The normalization consists of applying a L1 normalization in
|
|
cases in which the prevalence values are not all-zeros, and to convert the prevalence values into `1/n_classes` in
|
|
cases in which all values are zero.
|
|
|
|
:param prevalences: array-like of shape `(n_classes,)` or of shape `(n_samples, n_classes,)` with prevalence values
|
|
:return: a normalized vector or matrix of prevalence values
|
|
"""
|
|
prevalences = np.asarray(prevalences)
|
|
n_classes = prevalences.shape[-1]
|
|
accum = prevalences.sum(axis=-1, keepdims=True)
|
|
prevalences = np.true_divide(prevalences, accum, where=accum>0)
|
|
allzeros = accum.flatten()==0
|
|
if any(allzeros):
|
|
if prevalences.ndim == 1:
|
|
prevalences = np.full(shape=n_classes, fill_value=1./n_classes)
|
|
else:
|
|
prevalences[accum.flatten()==0] = np.full(shape=n_classes, fill_value=1./n_classes)
|
|
return prevalences
|
|
|
|
|
|
def __num_prevalence_combinations_depr(n_prevpoints:int, n_classes:int, n_repeats:int=1):
|
|
"""
|
|
Computes the number of prevalence combinations in the n_classes-dimensional simplex if `nprevpoints` equally distant
|
|
prevalence values are generated and `n_repeats` repetitions are requested.
|
|
|
|
:param n_classes: integer, number of classes
|
|
:param n_prevpoints: integer, number of prevalence points.
|
|
:param n_repeats: integer, number of repetitions for each prevalence combination
|
|
:return: The number of possible combinations. For example, if n_classes=2, n_prevpoints=5, n_repeats=1, then the
|
|
number of possible combinations are 5, i.e.: [0,1], [0.25,0.75], [0.50,0.50], [0.75,0.25], and [1.0,0.0]
|
|
"""
|
|
__cache={}
|
|
def __f(nc,np):
|
|
if (nc,np) in __cache: # cached result
|
|
return __cache[(nc,np)]
|
|
if nc==1: # stop condition
|
|
return 1
|
|
else: # recursive call
|
|
x = sum([__f(nc-1, np-i) for i in range(np)])
|
|
__cache[(nc,np)] = x
|
|
return x
|
|
return __f(n_classes, n_prevpoints) * n_repeats
|
|
|
|
|
|
def num_prevalence_combinations(n_prevpoints:int, n_classes:int, n_repeats:int=1):
|
|
"""
|
|
Computes the number of valid prevalence combinations in the n_classes-dimensional simplex if `n_prevpoints` equally
|
|
distant prevalence values are generated and `n_repeats` repetitions are requested.
|
|
The computation comes down to calculating:
|
|
|
|
.. math::
|
|
\\binom{N+C-1}{C-1} \\times r
|
|
|
|
where `N` is `n_prevpoints-1`, i.e., the number of probability mass blocks to allocate, `C` is the number of
|
|
classes, and `r` is `n_repeats`. This solution comes from the
|
|
`Stars and Bars <https://brilliant.org/wiki/integer-equations-star-and-bars/>`_ problem.
|
|
|
|
:param n_classes: integer, number of classes
|
|
:param n_prevpoints: integer, number of prevalence points.
|
|
:param n_repeats: integer, number of repetitions for each prevalence combination
|
|
:return: The number of possible combinations. For example, if n_classes=2, n_prevpoints=5, n_repeats=1, then the
|
|
number of possible combinations are 5, i.e.: [0,1], [0.25,0.75], [0.50,0.50], [0.75,0.25], and [1.0,0.0]
|
|
"""
|
|
N = n_prevpoints-1
|
|
C = n_classes
|
|
r = n_repeats
|
|
return int(scipy.special.binom(N + C - 1, C - 1) * r)
|
|
|
|
|
|
def get_nprevpoints_approximation(combinations_budget:int, n_classes:int, n_repeats:int=1):
|
|
"""
|
|
Searches for the largest number of (equidistant) prevalence points to define for each of the `n_classes` classes so
|
|
that the number of valid prevalence values generated as combinations of prevalence points (points in a
|
|
`n_classes`-dimensional simplex) do not exceed combinations_budget.
|
|
|
|
:param combinations_budget: integer, maximum number of combinations allowed
|
|
:param n_classes: integer, number of classes
|
|
:param n_repeats: integer, number of repetitions for each prevalence combination
|
|
:return: the largest number of prevalence points that generate less than combinations_budget valid prevalences
|
|
"""
|
|
assert n_classes > 0 and n_repeats > 0 and combinations_budget > 0, 'parameters must be positive integers'
|
|
n_prevpoints = 1
|
|
while True:
|
|
combinations = num_prevalence_combinations(n_prevpoints, n_classes, n_repeats)
|
|
if combinations > combinations_budget:
|
|
return n_prevpoints-1
|
|
else:
|
|
n_prevpoints += 1
|
|
|
|
|
|
def check_prevalence_vector(p, raise_exception=False, toleranze=1e-08):
|
|
"""
|
|
Checks that p is a valid prevalence vector, i.e., that it contains values in [0,1] and that the values sum up to 1.
|
|
|
|
:param p: the prevalence vector to check
|
|
:return: True if `p` is valid, False otherwise
|
|
"""
|
|
p = np.asarray(p)
|
|
if not all(p>=0):
|
|
if raise_exception:
|
|
raise ValueError('the prevalence vector contains negative numbers')
|
|
return False
|
|
if not all(p<=1):
|
|
if raise_exception:
|
|
raise ValueError('the prevalence vector contains values >1')
|
|
return False
|
|
if not np.isclose(p.sum(), 1, atol=toleranze):
|
|
if raise_exception:
|
|
raise ValueError('the prevalence vector does not sum up to 1')
|
|
return False
|
|
return True
|
|
|
|
|
|
def get_divergence(divergence: Union[str, Callable]):
|
|
if isinstance(divergence, str):
|
|
if divergence=='HD':
|
|
return HellingerDistance
|
|
elif divergence=='topsoe':
|
|
return TopsoeDistance
|
|
else:
|
|
raise ValueError(f'unknown divergence {divergence}')
|
|
elif callable(divergence):
|
|
return divergence
|
|
else:
|
|
raise ValueError(f'argument "divergence" not understood; use a str or a callable function')
|
|
|
|
|
|
def argmin_prevalence(loss, n_classes, method='optim_minimize'):
|
|
if method == 'optim_minimize':
|
|
return optim_minimize(loss, n_classes)
|
|
elif method == 'linear_search':
|
|
return linear_search(loss, n_classes)
|
|
elif method == 'ternary_search':
|
|
raise NotImplementedError()
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
|
|
def optim_minimize(loss, n_classes):
|
|
"""
|
|
Searches for the optimal prevalence values, i.e., an `n_classes`-dimensional vector of the (`n_classes`-1)-simplex
|
|
that yields the smallest lost. This optimization is carried out by means of a constrained search using scipy's
|
|
SLSQP routine.
|
|
|
|
:param loss: (callable) the function to minimize
|
|
:param n_classes: (int) the number of classes, i.e., the dimensionality of the prevalence vector
|
|
:return: (ndarray) the best prevalence vector found
|
|
"""
|
|
from scipy import optimize
|
|
|
|
# the initial point is set as the uniform distribution
|
|
uniform_distribution = np.full(fill_value=1 / n_classes, shape=(n_classes,))
|
|
|
|
# solutions are bounded to those contained in the unit-simplex
|
|
bounds = tuple((0, 1) for _ in range(n_classes)) # values in [0,1]
|
|
constraints = ({'type': 'eq', 'fun': lambda x: 1 - sum(x)}) # values summing up to 1
|
|
r = optimize.minimize(loss, x0=uniform_distribution, method='SLSQP', bounds=bounds, constraints=constraints)
|
|
return r.x
|
|
|
|
|
|
def linear_search(loss, n_classes):
|
|
"""
|
|
Performs a linear search for the best prevalence value in binary problems. The search is carried out by exploring
|
|
the range [0,1] stepping by 0.01. This search is inefficient, and is added only for completeness (some of the
|
|
early methods in quantification literature used it, e.g., HDy). A most powerful alternative is `optim_minimize`.
|
|
|
|
:param loss: (callable) the function to minimize
|
|
:param n_classes: (int) the number of classes, i.e., the dimensionality of the prevalence vector
|
|
:return: (ndarray) the best prevalence vector found
|
|
"""
|
|
assert n_classes==2, 'linear search is only available for binary problems'
|
|
|
|
prev_selected, min_score = None, None
|
|
for prev in prevalence_linspace(n_prevalences=100, repeats=1, smooth_limits_epsilon=0.0):
|
|
score = loss(np.asarray([1 - prev, prev]))
|
|
if min_score is None or score < min_score:
|
|
prev_selected, min_score = prev, score
|
|
|
|
return np.asarray([1 - prev_selected, prev_selected]) |