forked from moreo/QuaPy
794 lines
32 KiB
Python
794 lines
32 KiB
Python
from abc import abstractmethod
|
||
from copy import deepcopy
|
||
from typing import Union
|
||
|
||
import numpy as np
|
||
from joblib import Parallel, delayed
|
||
from sklearn.base import BaseEstimator
|
||
from sklearn.calibration import CalibratedClassifierCV
|
||
from sklearn.metrics import confusion_matrix
|
||
from sklearn.model_selection import StratifiedKFold
|
||
from tqdm import tqdm
|
||
|
||
import quapy as qp
|
||
import quapy.functional as F
|
||
from quapy.classification.svmperf import SVMperf
|
||
from quapy.data import LabelledCollection
|
||
from quapy.method.base import BaseQuantifier, BinaryQuantifier
|
||
|
||
|
||
# Abstract classes
|
||
# ------------------------------------
|
||
|
||
class AggregativeQuantifier(BaseQuantifier):
|
||
"""
|
||
Abstract class for quantification methods that base their estimations on the aggregation of classification
|
||
results. Aggregative Quantifiers thus implement a _classify_ method and maintain a _learner_ attribute.
|
||
"""
|
||
|
||
@abstractmethod
|
||
def fit(self, data: LabelledCollection, fit_learner=True): ...
|
||
|
||
@property
|
||
def learner(self):
|
||
return self.learner_
|
||
|
||
@learner.setter
|
||
def learner(self, value):
|
||
self.learner_ = value
|
||
|
||
def classify(self, instances):
|
||
return self.learner.predict(instances)
|
||
|
||
def quantify(self, instances):
|
||
classif_predictions = self.classify(instances)
|
||
return self.aggregate(classif_predictions)
|
||
|
||
@abstractmethod
|
||
def aggregate(self, classif_predictions: np.ndarray): ...
|
||
|
||
def get_params(self, deep=True):
|
||
return self.learner.get_params()
|
||
|
||
def set_params(self, **parameters):
|
||
self.learner.set_params(**parameters)
|
||
|
||
@property
|
||
def n_classes(self):
|
||
return len(self.classes_)
|
||
|
||
@property
|
||
def classes_(self):
|
||
return self.learner.classes_
|
||
|
||
@property
|
||
def aggregative(self):
|
||
return True
|
||
|
||
|
||
class AggregativeProbabilisticQuantifier(AggregativeQuantifier):
|
||
"""
|
||
Abstract class for quantification methods that base their estimations on the aggregation of posterior probabilities
|
||
as returned by a probabilistic classifier. Aggregative Probabilistic Quantifiers thus extend Aggregative
|
||
Quantifiers by implementing a _posterior_probabilities_ method returning values in [0,1] -- the posterior
|
||
probabilities.
|
||
"""
|
||
|
||
def posterior_probabilities(self, instances):
|
||
return self.learner.predict_proba(instances)
|
||
|
||
def predict_proba(self, instances):
|
||
return self.posterior_probabilities(instances)
|
||
|
||
def quantify(self, instances):
|
||
classif_posteriors = self.posterior_probabilities(instances)
|
||
return self.aggregate(classif_posteriors)
|
||
|
||
def set_params(self, **parameters):
|
||
if isinstance(self.learner, CalibratedClassifierCV):
|
||
parameters = {'base_estimator__' + k: v for k, v in parameters.items()}
|
||
self.learner.set_params(**parameters)
|
||
|
||
@property
|
||
def probabilistic(self):
|
||
return True
|
||
|
||
|
||
# Helper
|
||
# ------------------------------------
|
||
def training_helper(learner,
|
||
data: LabelledCollection,
|
||
fit_learner: bool = True,
|
||
ensure_probabilistic=False,
|
||
val_split: Union[LabelledCollection, float] = None):
|
||
"""
|
||
Training procedure common to all Aggregative Quantifiers.
|
||
:param learner: the learner to be fit
|
||
:param data: the data on which to fit the learner. If requested, the data will be split before fitting the learner.
|
||
:param fit_learner: whether or not to fit the learner (if False, then bypasses any action)
|
||
:param ensure_probabilistic: if True, guarantees that the resulting classifier implements predict_proba (if the
|
||
learner is not probabilistic, then a CalibratedCV instance of it is trained)
|
||
:param val_split: if specified as a float, indicates the proportion of training instances that will define the
|
||
validation split (e.g., 0.3 for using 30% of the training set as validation data); if specified as a
|
||
LabelledCollection, represents the validation split itself
|
||
:return: the learner trained on the training set, and the unused data (a _LabelledCollection_ if train_val_split>0
|
||
or None otherwise) to be used as a validation set for any subsequent parameter fitting
|
||
"""
|
||
if fit_learner:
|
||
if ensure_probabilistic:
|
||
if not hasattr(learner, 'predict_proba'):
|
||
print(f'The learner {learner.__class__.__name__} does not seem to be probabilistic. '
|
||
f'The learner will be calibrated.')
|
||
learner = CalibratedClassifierCV(learner, cv=5)
|
||
if val_split is not None:
|
||
if isinstance(val_split, float):
|
||
if not (0 < val_split < 1):
|
||
raise ValueError(f'train/val split {val_split} out of range, must be in (0,1)')
|
||
train, unused = data.split_stratified(train_prop=1 - val_split)
|
||
elif val_split.__class__.__name__ == LabelledCollection.__name__: # isinstance(val_split, LabelledCollection):
|
||
train = data
|
||
unused = val_split
|
||
else:
|
||
raise ValueError(
|
||
f'param "val_split" ({type(val_split)}) not understood; use either a float indicating the split '
|
||
'proportion, or a LabelledCollection indicating the validation split')
|
||
else:
|
||
train, unused = data, None
|
||
|
||
if isinstance(learner, BaseQuantifier):
|
||
learner.fit(train)
|
||
else:
|
||
learner.fit(train.instances, train.labels)
|
||
else:
|
||
if ensure_probabilistic:
|
||
if not hasattr(learner, 'predict_proba'):
|
||
raise AssertionError('error: the learner cannot be calibrated since fit_learner is set to False')
|
||
unused = data
|
||
|
||
return learner, unused
|
||
|
||
|
||
# Methods
|
||
# ------------------------------------
|
||
class CC(AggregativeQuantifier):
|
||
"""
|
||
The most basic Quantification method. One that simply classifies all instances and countes how many have been
|
||
attributed each of the classes in order to compute class prevalence estimates.
|
||
"""
|
||
|
||
def __init__(self, learner: BaseEstimator):
|
||
self.learner = learner
|
||
|
||
def fit(self, data: LabelledCollection, fit_learner=True):
|
||
"""
|
||
Trains the Classify & Count method unless _fit_learner_ is False, in which case it is assumed to be already fit.
|
||
:param data: training data
|
||
:param fit_learner: if False, the classifier is assumed to be fit
|
||
:return: self
|
||
"""
|
||
self.learner, _ = training_helper(self.learner, data, fit_learner)
|
||
return self
|
||
|
||
def aggregate(self, classif_predictions):
|
||
return F.prevalence_from_labels(classif_predictions, self.classes_)
|
||
|
||
|
||
class ACC(AggregativeQuantifier):
|
||
|
||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||
self.learner = learner
|
||
self.val_split = val_split
|
||
|
||
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None):
|
||
"""
|
||
Trains a ACC quantifier
|
||
:param data: the training set
|
||
:param fit_learner: set to False to bypass the training (the learner is assumed to be already fit)
|
||
:param val_split: either a float in (0,1) indicating the proportion of training instances to use for
|
||
validation (e.g., 0.3 for using 30% of the training set as validation data), or a LabelledCollection
|
||
indicating the validation set itself, or an int indicating the number k of folds to be used in kFCV
|
||
to estimate the parameters
|
||
:return: self
|
||
"""
|
||
if val_split is None:
|
||
val_split = self.val_split
|
||
if isinstance(val_split, int):
|
||
# kFCV estimation of parameters
|
||
y, y_ = [], []
|
||
kfcv = StratifiedKFold(n_splits=val_split)
|
||
pbar = tqdm(kfcv.split(*data.Xy), total=val_split)
|
||
for k, (training_idx, validation_idx) in enumerate(pbar):
|
||
pbar.set_description(f'{self.__class__.__name__} fitting fold {k}')
|
||
training = data.sampling_from_index(training_idx)
|
||
validation = data.sampling_from_index(validation_idx)
|
||
learner, val_data = training_helper(self.learner, training, fit_learner, val_split=validation)
|
||
y_.append(learner.predict(val_data.instances))
|
||
y.append(val_data.labels)
|
||
|
||
y = np.concatenate(y)
|
||
y_ = np.concatenate(y_)
|
||
class_count = data.counts()
|
||
|
||
# fit the learner on all data
|
||
self.learner, _ = training_helper(self.learner, data, fit_learner, val_split=None)
|
||
|
||
else:
|
||
self.learner, val_data = training_helper(self.learner, data, fit_learner, val_split=val_split)
|
||
y_ = self.learner.predict(val_data.instances)
|
||
y = val_data.labels
|
||
class_count = val_data.counts()
|
||
|
||
self.cc = CC(self.learner)
|
||
|
||
# estimate the matrix with entry (i,j) being the estimate of P(yi|yj), that is, the probability that a
|
||
# document that belongs to yj ends up being classified as belonging to yi
|
||
self.Pte_cond_estim_ = confusion_matrix(y, y_).T / class_count
|
||
|
||
return self
|
||
|
||
def classify(self, data):
|
||
return self.cc.classify(data)
|
||
|
||
def aggregate(self, classif_predictions):
|
||
prevs_estim = self.cc.aggregate(classif_predictions)
|
||
return ACC.solve_adjustment(self.Pte_cond_estim_, prevs_estim)
|
||
|
||
@classmethod
|
||
def solve_adjustment(cls, PteCondEstim, prevs_estim):
|
||
# solve for the linear system Ax = B with A=PteCondEstim and B = prevs_estim
|
||
A = PteCondEstim
|
||
B = prevs_estim
|
||
try:
|
||
adjusted_prevs = np.linalg.solve(A, B)
|
||
adjusted_prevs = np.clip(adjusted_prevs, 0, 1)
|
||
adjusted_prevs /= adjusted_prevs.sum()
|
||
except np.linalg.LinAlgError:
|
||
adjusted_prevs = prevs_estim # no way to adjust them!
|
||
return adjusted_prevs
|
||
|
||
|
||
class PCC(AggregativeProbabilisticQuantifier):
|
||
def __init__(self, learner: BaseEstimator):
|
||
self.learner = learner
|
||
|
||
def fit(self, data: LabelledCollection, fit_learner=True):
|
||
self.learner, _ = training_helper(self.learner, data, fit_learner, ensure_probabilistic=True)
|
||
return self
|
||
|
||
def aggregate(self, classif_posteriors):
|
||
return F.prevalence_from_probabilities(classif_posteriors, binarize=False)
|
||
|
||
|
||
class PACC(AggregativeProbabilisticQuantifier):
|
||
|
||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||
self.learner = learner
|
||
self.val_split = val_split
|
||
|
||
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None):
|
||
"""
|
||
Trains a PACC quantifier
|
||
:param data: the training set
|
||
:param fit_learner: set to False to bypass the training (the learner is assumed to be already fit)
|
||
:param val_split: either a float in (0,1) indicating the proportion of training instances to use for
|
||
validation (e.g., 0.3 for using 30% of the training set as validation data), or a LabelledCollection
|
||
indicating the validation set itself, or an int indicating the number k of folds to be used in kFCV
|
||
to estimate the parameters
|
||
:return: self
|
||
"""
|
||
if val_split is None:
|
||
val_split = self.val_split
|
||
|
||
if isinstance(val_split, int):
|
||
# kFCV estimation of parameters
|
||
y, y_ = [], []
|
||
kfcv = StratifiedKFold(n_splits=val_split)
|
||
pbar = tqdm(kfcv.split(*data.Xy), total=val_split)
|
||
for k, (training_idx, validation_idx) in enumerate(pbar):
|
||
pbar.set_description(f'{self.__class__.__name__} fitting fold {k}')
|
||
training = data.sampling_from_index(training_idx)
|
||
validation = data.sampling_from_index(validation_idx)
|
||
learner, val_data = training_helper(
|
||
self.learner, training, fit_learner, ensure_probabilistic=True, val_split=validation)
|
||
y_.append(learner.predict_proba(val_data.instances))
|
||
y.append(val_data.labels)
|
||
|
||
y = np.concatenate(y)
|
||
y_ = np.vstack(y_)
|
||
|
||
# fit the learner on all data
|
||
self.learner, _ = training_helper(self.learner, data, fit_learner, ensure_probabilistic=True,
|
||
val_split=None)
|
||
|
||
else:
|
||
self.learner, val_data = training_helper(
|
||
self.learner, data, fit_learner, ensure_probabilistic=True, val_split=val_split)
|
||
y_ = self.learner.predict_proba(val_data.instances)
|
||
y = val_data.labels
|
||
|
||
self.pcc = PCC(self.learner)
|
||
|
||
# estimate the matrix with entry (i,j) being the estimate of P(yi|yj), that is, the probability that a
|
||
# document that belongs to yj ends up being classified as belonging to yi
|
||
confusion = np.empty(shape=(data.n_classes, data.n_classes))
|
||
for i,class_ in enumerate(data.classes_):
|
||
confusion[i] = y_[y == class_].mean(axis=0)
|
||
|
||
self.Pte_cond_estim_ = confusion.T
|
||
|
||
return self
|
||
|
||
def aggregate(self, classif_posteriors):
|
||
prevs_estim = self.pcc.aggregate(classif_posteriors)
|
||
return ACC.solve_adjustment(self.Pte_cond_estim_, prevs_estim)
|
||
|
||
def classify(self, data):
|
||
return self.pcc.classify(data)
|
||
|
||
|
||
class EMQ(AggregativeProbabilisticQuantifier):
|
||
"""
|
||
The method is described in:
|
||
Saerens, M., Latinne, P., and Decaestecker, C. (2002).
|
||
Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure.
|
||
Neural Computation, 14(1): 21–41.
|
||
"""
|
||
|
||
MAX_ITER = 1000
|
||
EPSILON = 1e-4
|
||
|
||
def __init__(self, learner: BaseEstimator):
|
||
self.learner = learner
|
||
|
||
def fit(self, data: LabelledCollection, fit_learner=True):
|
||
self.learner, _ = training_helper(self.learner, data, fit_learner, ensure_probabilistic=True)
|
||
self.train_prevalence = F.prevalence_from_labels(data.labels, self.classes_)
|
||
return self
|
||
|
||
def aggregate(self, classif_posteriors, epsilon=EPSILON):
|
||
priors, posteriors = self.EM(self.train_prevalence, classif_posteriors, epsilon)
|
||
return priors
|
||
|
||
def predict_proba(self, instances, epsilon=EPSILON):
|
||
classif_posteriors = self.learner.predict_proba(instances)
|
||
priors, posteriors = self.EM(self.train_prevalence, classif_posteriors, epsilon)
|
||
return posteriors
|
||
|
||
@classmethod
|
||
def EM(cls, tr_prev, posterior_probabilities, epsilon=EPSILON):
|
||
Px = posterior_probabilities
|
||
Ptr = np.copy(tr_prev)
|
||
qs = np.copy(Ptr) # qs (the running estimate) is initialized as the training prevalence
|
||
|
||
s, converged = 0, False
|
||
qs_prev_ = None
|
||
while not converged and s < EMQ.MAX_ITER:
|
||
# E-step: ps is Ps(y|xi)
|
||
ps_unnormalized = (qs / Ptr) * Px
|
||
ps = ps_unnormalized / ps_unnormalized.sum(axis=1, keepdims=True)
|
||
|
||
# M-step:
|
||
qs = ps.mean(axis=0)
|
||
|
||
if qs_prev_ is not None and qp.error.mae(qs, qs_prev_) < epsilon and s > 10:
|
||
converged = True
|
||
|
||
qs_prev_ = qs
|
||
s += 1
|
||
|
||
if not converged:
|
||
print('[warning] the method has reached the maximum number of iterations; it might have not converged')
|
||
|
||
return qs, ps
|
||
|
||
|
||
class HDy(AggregativeProbabilisticQuantifier, BinaryQuantifier):
|
||
"""
|
||
Implementation of the method based on the Hellinger Distance y (HDy) proposed by
|
||
González-Castro, V., Alaiz-Rodrı́guez, R., and Alegre, E. (2013). Class distribution
|
||
estimation based on the Hellinger distance. Information Sciences, 218:146–164.
|
||
"""
|
||
|
||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||
self.learner = learner
|
||
self.val_split = val_split
|
||
|
||
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, LabelledCollection] = None):
|
||
"""
|
||
Trains a HDy quantifier
|
||
:param data: the training set
|
||
:param fit_learner: set to False to bypass the training (the learner is assumed to be already fit)
|
||
:param val_split: either a float in (0,1) indicating the proportion of training instances to use for
|
||
validation (e.g., 0.3 for using 30% of the training set as validation data), or a LabelledCollection
|
||
indicating the validation set itself
|
||
:return: self
|
||
"""
|
||
if val_split is None:
|
||
val_split = self.val_split
|
||
|
||
self._check_binary(data, self.__class__.__name__)
|
||
self.learner, validation = training_helper(
|
||
self.learner, data, fit_learner, ensure_probabilistic=True, val_split=val_split)
|
||
Px = self.posterior_probabilities(validation.instances)[:, 1] # takes only the P(y=+1|x)
|
||
self.Pxy1 = Px[validation.labels == self.learner.classes_[1]]
|
||
self.Pxy0 = Px[validation.labels == self.learner.classes_[0]]
|
||
# pre-compute the histogram for positive and negative examples
|
||
self.bins = np.linspace(10, 110, 11, dtype=int) # [10, 20, 30, ..., 100, 110]
|
||
self.Pxy1_density = {bins: np.histogram(self.Pxy1, bins=bins, range=(0, 1), density=True)[0] for bins in
|
||
self.bins}
|
||
self.Pxy0_density = {bins: np.histogram(self.Pxy0, bins=bins, range=(0, 1), density=True)[0] for bins in
|
||
self.bins}
|
||
return self
|
||
|
||
def aggregate(self, classif_posteriors):
|
||
# "In this work, the number of bins b used in HDx and HDy was chosen from 10 to 110 in steps of 10,
|
||
# and the final estimated a priori probability was taken as the median of these 11 estimates."
|
||
# (González-Castro, et al., 2013).
|
||
|
||
Px = classif_posteriors[:, 1] # takes only the P(y=+1|x)
|
||
|
||
prev_estimations = []
|
||
# for bins in np.linspace(10, 110, 11, dtype=int): #[10, 20, 30, ..., 100, 110]
|
||
# Pxy0_density, _ = np.histogram(self.Pxy0, bins=bins, range=(0, 1), density=True)
|
||
# Pxy1_density, _ = np.histogram(self.Pxy1, bins=bins, range=(0, 1), density=True)
|
||
for bins in self.bins:
|
||
Pxy0_density = self.Pxy0_density[bins]
|
||
Pxy1_density = self.Pxy1_density[bins]
|
||
|
||
Px_test, _ = np.histogram(Px, bins=bins, range=(0, 1), density=True)
|
||
|
||
prev_selected, min_dist = None, None
|
||
for prev in F.prevalence_linspace(n_prevalences=100, repeat=1, smooth_limits_epsilon=0.0):
|
||
Px_train = prev * Pxy1_density + (1 - prev) * Pxy0_density
|
||
hdy = F.HellingerDistance(Px_train, Px_test)
|
||
if prev_selected is None or hdy < min_dist:
|
||
prev_selected, min_dist = prev, hdy
|
||
prev_estimations.append(prev_selected)
|
||
|
||
class1_prev = np.median(prev_estimations)
|
||
return np.asarray([1 - class1_prev, class1_prev])
|
||
|
||
|
||
class ELM(AggregativeQuantifier, BinaryQuantifier):
|
||
|
||
def __init__(self, svmperf_base=None, loss='01', **kwargs):
|
||
self.svmperf_base = svmperf_base if svmperf_base is not None else qp.environ['SVMPERF_HOME']
|
||
self.loss = loss
|
||
self.kwargs = kwargs
|
||
self.learner = SVMperf(self.svmperf_base, loss=self.loss, **self.kwargs)
|
||
|
||
def fit(self, data: LabelledCollection, fit_learner=True):
|
||
self._check_binary(data, self.__class__.__name__)
|
||
assert fit_learner, 'the method requires that fit_learner=True'
|
||
self.learner.fit(data.instances, data.labels)
|
||
return self
|
||
|
||
def aggregate(self, classif_predictions: np.ndarray):
|
||
return F.prevalence_from_labels(classif_predictions, self.classes_)
|
||
|
||
def classify(self, X, y=None):
|
||
return self.learner.predict(X)
|
||
|
||
|
||
class SVMQ(ELM):
|
||
"""
|
||
Barranquero, J., Díez, J., and del Coz, J. J. (2015).
|
||
Quantification-oriented learning based on reliable classifiers.
|
||
Pattern Recognition, 48(2):591–604.
|
||
"""
|
||
|
||
def __init__(self, svmperf_base=None, **kwargs):
|
||
super(SVMQ, self).__init__(svmperf_base, loss='q', **kwargs)
|
||
|
||
|
||
class SVMKLD(ELM):
|
||
"""
|
||
Esuli, A. and Sebastiani, F. (2015).
|
||
Optimizing text quantifiers for multivariate loss functions.
|
||
ACM Transactions on Knowledge Discovery and Data, 9(4):Article 27.
|
||
"""
|
||
|
||
def __init__(self, svmperf_base=None, **kwargs):
|
||
super(SVMKLD, self).__init__(svmperf_base, loss='kld', **kwargs)
|
||
|
||
|
||
class SVMNKLD(ELM):
|
||
"""
|
||
Esuli, A. and Sebastiani, F. (2015).
|
||
Optimizing text quantifiers for multivariate loss functions.
|
||
ACM Transactions on Knowledge Discovery and Data, 9(4):Article 27.
|
||
"""
|
||
|
||
def __init__(self, svmperf_base=None, **kwargs):
|
||
super(SVMNKLD, self).__init__(svmperf_base, loss='nkld', **kwargs)
|
||
|
||
|
||
class SVMAE(ELM):
|
||
def __init__(self, svmperf_base=None, **kwargs):
|
||
super(SVMAE, self).__init__(svmperf_base, loss='mae', **kwargs)
|
||
|
||
|
||
class SVMRAE(ELM):
|
||
def __init__(self, svmperf_base=None, **kwargs):
|
||
super(SVMRAE, self).__init__(svmperf_base, loss='mrae', **kwargs)
|
||
|
||
|
||
class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
|
||
|
||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||
self.learner = learner
|
||
self.val_split = val_split
|
||
|
||
@abstractmethod
|
||
def optimize_threshold(self, y, probabilities):
|
||
...
|
||
|
||
def fit(self, data: LabelledCollection, fit_learner=True, val_split: Union[float, int, LabelledCollection] = None):
|
||
BinaryQuantifier._check_binary(data, "Threshold Optimization")
|
||
|
||
if val_split is None:
|
||
val_split = self.val_split
|
||
if isinstance(val_split, int):
|
||
# kFCV estimation of parameters
|
||
y, probabilities = [], []
|
||
kfcv = StratifiedKFold(n_splits=val_split)
|
||
pbar = tqdm(kfcv.split(*data.Xy), total=val_split)
|
||
for k, (training_idx, validation_idx) in enumerate(pbar):
|
||
pbar.set_description(f'{self.__class__.__name__} fitting fold {k}')
|
||
training = data.sampling_from_index(training_idx)
|
||
validation = data.sampling_from_index(validation_idx)
|
||
learner, val_data = training_helper(self.learner, training, fit_learner, val_split=validation)
|
||
probabilities.append(learner.predict_proba(val_data.instances))
|
||
y.append(val_data.labels)
|
||
|
||
y = np.concatenate(y)
|
||
probabilities = np.concatenate(probabilities)
|
||
|
||
# fit the learner on all data
|
||
self.learner, _ = training_helper(self.learner, data, fit_learner, val_split=None)
|
||
|
||
else:
|
||
self.learner, val_data = training_helper(self.learner, data, fit_learner, val_split=val_split)
|
||
probabilities = self.learner.predict_proba(val_data.instances)
|
||
y = val_data.labels
|
||
|
||
self.cc = CC(self.learner)
|
||
|
||
self.tpr, self.fpr = self.optimize_threshold(y, probabilities)
|
||
|
||
return self
|
||
|
||
@abstractmethod
|
||
def _condition(self, tpr, fpr) -> float:
|
||
"""
|
||
Implements the criterion according to which the threshold should be selected.
|
||
This function should return a (float) score to be minimized.
|
||
"""
|
||
...
|
||
|
||
def optimize_threshold(self, y, probabilities):
|
||
best_candidate_threshold_score = None
|
||
best_tpr = 0
|
||
best_fpr = 0
|
||
candidate_thresholds = np.unique(probabilities[:, 1])
|
||
for candidate_threshold in candidate_thresholds:
|
||
y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]]
|
||
TP, FP, FN, TN = self.compute_table(y, y_)
|
||
tpr = self.compute_tpr(TP, FP)
|
||
fpr = self.compute_fpr(FP, TN)
|
||
condition_score = self._condition(tpr, fpr)
|
||
if best_candidate_threshold_score is None or condition_score < best_candidate_threshold_score:
|
||
best_candidate_threshold_score = condition_score
|
||
best_tpr = tpr
|
||
best_fpr = fpr
|
||
|
||
return best_tpr, best_fpr
|
||
|
||
def aggregate(self, classif_predictions):
|
||
prevs_estim = self.cc.aggregate(classif_predictions)
|
||
if self.tpr - self.fpr == 0:
|
||
return prevs_estim
|
||
adjusted_prevs_estim = np.clip((prevs_estim[1] - self.fpr) / (self.tpr - self.fpr), 0, 1)
|
||
adjusted_prevs_estim = np.array((1 - adjusted_prevs_estim, adjusted_prevs_estim))
|
||
return adjusted_prevs_estim
|
||
|
||
def compute_table(self, y, y_):
|
||
TP = np.logical_and(y == y_, y == self.classes_[1]).sum()
|
||
FP = np.logical_and(y != y_, y == self.classes_[0]).sum()
|
||
FN = np.logical_and(y != y_, y == self.classes_[1]).sum()
|
||
TN = np.logical_and(y == y_, y == self.classes_[0]).sum()
|
||
return TP, FP, FN, TN
|
||
|
||
def compute_tpr(self, TP, FP):
|
||
if TP + FP == 0:
|
||
return 0
|
||
return TP / (TP + FP)
|
||
|
||
def compute_fpr(self, FP, TN):
|
||
if FP + TN == 0:
|
||
return 0
|
||
return FP / (FP + TN)
|
||
|
||
|
||
class T50(ThresholdOptimization):
|
||
|
||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||
super().__init__(learner, val_split)
|
||
|
||
def _condition(self, tpr, fpr) -> float:
|
||
return abs(tpr - 0.5)
|
||
|
||
|
||
class MAX(ThresholdOptimization):
|
||
|
||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||
super().__init__(learner, val_split)
|
||
|
||
def _condition(self, tpr, fpr) -> float:
|
||
# MAX strives to maximize (tpr - fpr), which is equivalent to minimize (fpr - tpr)
|
||
return (fpr - tpr)
|
||
|
||
|
||
class X(ThresholdOptimization):
|
||
|
||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||
super().__init__(learner, val_split)
|
||
|
||
def _condition(self, tpr, fpr) -> float:
|
||
return abs(1 - (tpr + fpr))
|
||
|
||
|
||
class MS(ThresholdOptimization):
|
||
|
||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||
super().__init__(learner, val_split)
|
||
|
||
def optimize_threshold(self, y, probabilities):
|
||
tprs = []
|
||
fprs = []
|
||
candidate_thresholds = np.unique(probabilities[:, 1])
|
||
for candidate_threshold in candidate_thresholds:
|
||
y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]]
|
||
TP, FP, FN, TN = self.compute_table(y, y_)
|
||
tpr = self.compute_tpr(TP, FP)
|
||
fpr = self.compute_fpr(FP, TN)
|
||
tprs.append(tpr)
|
||
fprs.append(fpr)
|
||
return np.median(tprs), np.median(fprs)
|
||
|
||
|
||
class MS2(MS):
|
||
|
||
def __init__(self, learner: BaseEstimator, val_split=0.4):
|
||
super().__init__(learner, val_split)
|
||
|
||
def optimize_threshold(self, y, probabilities):
|
||
tprs = [0, 1]
|
||
fprs = [0, 1]
|
||
candidate_thresholds = np.unique(probabilities[:, 1])
|
||
for candidate_threshold in candidate_thresholds:
|
||
y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]]
|
||
TP, FP, FN, TN = self.compute_table(y, y_)
|
||
tpr = self.compute_tpr(TP, FP)
|
||
fpr = self.compute_fpr(FP, TN)
|
||
if (tpr - fpr) > 0.25:
|
||
tprs.append(tpr)
|
||
fprs.append(fpr)
|
||
return np.median(tprs), np.median(fprs)
|
||
|
||
|
||
ClassifyAndCount = CC
|
||
AdjustedClassifyAndCount = ACC
|
||
ProbabilisticClassifyAndCount = PCC
|
||
ProbabilisticAdjustedClassifyAndCount = PACC
|
||
ExpectationMaximizationQuantifier = EMQ
|
||
HellingerDistanceY = HDy
|
||
ExplicitLossMinimisation = ELM
|
||
MedianSweep = MS
|
||
MedianSweep2 = MS2
|
||
|
||
|
||
class OneVsAll(AggregativeQuantifier):
|
||
"""
|
||
Allows any binary quantifier to perform quantification on single-label datasets. The method maintains one binary
|
||
quantifier for each class, and then l1-normalizes the outputs so that the class prevelences sum up to 1.
|
||
This variant was used, along with the ExplicitLossMinimization quantifier in
|
||
Gao, W., Sebastiani, F.: From classification to quantification in tweet sentiment analysis.
|
||
Social Network Analysis and Mining 6(19), 1–22 (2016)
|
||
"""
|
||
|
||
def __init__(self, binary_quantifier, n_jobs=-1):
|
||
self.binary_quantifier = binary_quantifier
|
||
self.n_jobs = n_jobs
|
||
|
||
def fit(self, data: LabelledCollection, fit_learner=True):
|
||
assert not data.binary, \
|
||
f'{self.__class__.__name__} expect non-binary data'
|
||
assert isinstance(self.binary_quantifier, BaseQuantifier), \
|
||
f'{self.binary_quantifier} does not seem to be a Quantifier'
|
||
assert fit_learner == True, 'fit_learner must be True'
|
||
|
||
self.dict_binary_quantifiers = {c: deepcopy(self.binary_quantifier) for c in data.classes_}
|
||
self.__parallel(self._delayed_binary_fit, data)
|
||
return self
|
||
|
||
def classify(self, instances):
|
||
# returns a matrix of shape (n,m) with n the number of instances and m the number of classes. The entry
|
||
# (i,j) is a binary value indicating whether instance i belongs to class j. The binary classifications are
|
||
# independent of each other, meaning that an instance can end up be attributed to 0, 1, or more classes.
|
||
classif_predictions_bin = self.__parallel(self._delayed_binary_classification, instances)
|
||
return classif_predictions_bin.T
|
||
|
||
def posterior_probabilities(self, instances):
|
||
# returns a matrix of shape (n,m,2) with n the number of instances and m the number of classes. The entry
|
||
# (i,j,1) (resp. (i,j,0)) is a value in [0,1] indicating the posterior probability that instance i belongs
|
||
# (resp. does not belong) to class j.
|
||
# The posterior probabilities are independent of each other, meaning that, in general, they do not sum
|
||
# up to one.
|
||
if not self.binary_quantifier.probabilistic:
|
||
raise NotImplementedError(f'{self.__class__.__name__} does not implement posterior_probabilities because '
|
||
f'the base quantifier {self.binary_quantifier.__class__.__name__} is not '
|
||
f'probabilistic')
|
||
posterior_predictions_bin = self.__parallel(self._delayed_binary_posteriors, instances)
|
||
return np.swapaxes(posterior_predictions_bin, 0, 1)
|
||
|
||
def aggregate(self, classif_predictions_bin):
|
||
if self.probabilistic:
|
||
assert classif_predictions_bin.shape[1] == self.n_classes and classif_predictions_bin.shape[2] == 2, \
|
||
'param classif_predictions_bin does not seem to be a valid matrix (ndarray) of posterior ' \
|
||
'probabilities (2 dimensions) for each document (row) and class (columns)'
|
||
else:
|
||
assert set(np.unique(classif_predictions_bin)).issubset({0, 1}), \
|
||
'param classif_predictions_bin does not seem to be a valid matrix (ndarray) of binary ' \
|
||
'predictions for each document (row) and class (columns)'
|
||
prevalences = self.__parallel(self._delayed_binary_aggregate, classif_predictions_bin)
|
||
return F.normalize_prevalence(prevalences)
|
||
|
||
def quantify(self, X):
|
||
if self.probabilistic:
|
||
predictions = self.posterior_probabilities(X)
|
||
else:
|
||
predictions = self.classify(X)
|
||
return self.aggregate(predictions)
|
||
|
||
def __parallel(self, func, *args, **kwargs):
|
||
return np.asarray(
|
||
# some quantifiers (in particular, ELM-based ones) cannot be run with multiprocess, since the temp dir they
|
||
# create during the fit will be removed and be no longer available for the predict...
|
||
Parallel(n_jobs=self.n_jobs, backend='threading')(
|
||
delayed(func)(c, *args, **kwargs) for c in self.classes_
|
||
)
|
||
)
|
||
|
||
@property
|
||
def classes_(self):
|
||
return sorted(self.dict_binary_quantifiers.keys())
|
||
|
||
def set_params(self, **parameters):
|
||
self.binary_quantifier.set_params(**parameters)
|
||
|
||
def get_params(self, deep=True):
|
||
return self.binary_quantifier.get_params()
|
||
|
||
def _delayed_binary_classification(self, c, X):
|
||
return self.dict_binary_quantifiers[c].classify(X)
|
||
|
||
def _delayed_binary_posteriors(self, c, X):
|
||
return self.dict_binary_quantifiers[c].posterior_probabilities(X)
|
||
|
||
def _delayed_binary_aggregate(self, c, classif_predictions):
|
||
# the estimation for the positive class prevalence
|
||
return self.dict_binary_quantifiers[c].aggregate(classif_predictions[:, c])[1]
|
||
|
||
def _delayed_binary_fit(self, c, data):
|
||
bindata = LabelledCollection(data.instances, data.labels == c, classes_=[False, True])
|
||
self.dict_binary_quantifiers[c].fit(bindata)
|
||
|
||
@property
|
||
def binary(self):
|
||
return False
|
||
|
||
@property
|
||
def probabilistic(self):
|
||
return self.binary_quantifier.probabilistic
|