1
0
Fork 0
QuaPy/quapy/error.py

331 lines
15 KiB
Python

"""Implementation of error measures used for quantification"""
import numpy as np
from sklearn.metrics import f1_score
import quapy as qp
def from_name(err_name):
"""Gets an error function from its name. E.g., `from_name("mae")`
will return function :meth:`quapy.error.mae`
:param err_name: string, the error name
:return: a callable implementing the requested error
"""
assert err_name in ERROR_NAMES, f'unknown error {err_name}'
callable_error = globals()[err_name]
return callable_error
def f1e(y_true, y_pred):
"""F1 error: simply computes the error in terms of macro :math:`F_1`, i.e.,
:math:`1-F_1^M`, where :math:`F_1` is the harmonic mean of precision and recall,
defined as :math:`\\frac{2tp}{2tp+fp+fn}`, with `tp`, `fp`, and `fn` standing
for true positives, false positives, and false negatives, respectively.
`Macro` averaging means the :math:`F_1` is computed for each category independently,
and then averaged.
:param y_true: array-like of true labels
:param y_pred: array-like of predicted labels
:return: :math:`1-F_1^M`
"""
return 1. - f1_score(y_true, y_pred, average='macro')
def acce(y_true, y_pred):
"""Computes the error in terms of 1-accuracy. The accuracy is computed as
:math:`\\frac{tp+tn}{tp+fp+fn+tn}`, with `tp`, `fp`, `fn`, and `tn` standing
for true positives, false positives, false negatives, and true negatives,
respectively
:param y_true: array-like of true labels
:param y_pred: array-like of predicted labels
:return: 1-accuracy
"""
return 1. - (y_true == y_pred).mean()
def mae(prevs, prevs_hat):
"""Computes the mean absolute error (see :meth:`quapy.error.ae`) across the sample pairs.
:param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values
:param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted
prevalence values
:return: mean absolute error
"""
return ae(prevs, prevs_hat).mean()
def ae(prevs, prevs_hat):
"""Computes the absolute error between the two prevalence vectors.
Absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}` is computed as
:math:`AE(p,\\hat{p})=\\frac{1}{|\\mathcal{Y}|}\\sum_{y\\in \\mathcal{Y}}|\\hat{p}(y)-p(y)|`,
where :math:`\\mathcal{Y}` are the classes of interest.
:param prevs: array-like of shape `(n_classes,)` with the true prevalence values
:param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values
:return: absolute error
"""
assert prevs.shape == prevs_hat.shape, f'wrong shape {prevs.shape} vs. {prevs_hat.shape}'
return abs(prevs_hat - prevs).mean(axis=-1)
def nae(prevs, prevs_hat):
"""Computes the normalized absolute error between the two prevalence vectors.
Normalized absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}` is computed as
:math:`NAE(p,\\hat{p})=\\frac{AE(p,\\hat{p})}{z_{AE}}`,
where :math:`z_{AE}=\\frac{2(1-\\min_{y\\in \\mathcal{Y}} p(y))}{|\\mathcal{Y}|}`, and :math:`\\mathcal{Y}`
are the classes of interest.
:param prevs: array-like of shape `(n_classes,)` with the true prevalence values
:param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values
:return: normalized absolute error
"""
assert prevs.shape == prevs_hat.shape, f'wrong shape {prevs.shape} vs. {prevs_hat.shape}'
return abs(prevs_hat - prevs).sum(axis=-1)/(2*(1-prevs.min(axis=-1)))
def mnae(prevs, prevs_hat):
"""Computes the mean normalized absolute error (see :meth:`quapy.error.nae`) across the sample pairs.
:param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values
:param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted
prevalence values
:return: mean normalized absolute error
"""
return nae(prevs, prevs_hat).mean()
def mse(prevs, prevs_hat):
"""Computes the mean squared error (see :meth:`quapy.error.se`) across the sample pairs.
:param prevs: array-like of shape `(n_samples, n_classes,)` with the
true prevalence values
:param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the
predicted prevalence values
:return: mean squared error
"""
return se(prevs, prevs_hat).mean()
def se(prevs, prevs_hat):
"""Computes the squared error between the two prevalence vectors.
Squared error between two prevalence vectors :math:`p` and :math:`\\hat{p}` is computed as
:math:`SE(p,\\hat{p})=\\frac{1}{|\\mathcal{Y}|}\\sum_{y\\in \\mathcal{Y}}(\\hat{p}(y)-p(y))^2`,
where
:math:`\\mathcal{Y}` are the classes of interest.
:param prevs: array-like of shape `(n_classes,)` with the true prevalence values
:param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values
:return: absolute error
"""
return ((prevs_hat - prevs) ** 2).mean(axis=-1)
def mkld(prevs, prevs_hat, eps=None):
"""Computes the mean Kullback-Leibler divergence (see :meth:`quapy.error.kld`) across the
sample pairs. The distributions are smoothed using the `eps` factor
(see :meth:`quapy.error.smooth`).
:param prevs: array-like of shape `(n_samples, n_classes,)` with the true
prevalence values
:param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted
prevalence values
:param eps: smoothing factor. KLD is not defined in cases in which the distributions contain
zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size.
If `eps=None`, the sample size will be taken from the environment variable `SAMPLE_SIZE`
(which has thus to be set beforehand).
:return: mean Kullback-Leibler distribution
"""
return kld(prevs, prevs_hat, eps).mean()
def kld(prevs, prevs_hat, eps=None):
"""Computes the Kullback-Leibler divergence between the two prevalence distributions.
Kullback-Leibler divergence between two prevalence distributions :math:`p` and :math:`\\hat{p}`
is computed as
:math:`KLD(p,\\hat{p})=D_{KL}(p||\\hat{p})=
\\sum_{y\\in \\mathcal{Y}} p(y)\\log\\frac{p(y)}{\\hat{p}(y)}`,
where :math:`\\mathcal{Y}` are the classes of interest.
The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).
:param prevs: array-like of shape `(n_classes,)` with the true prevalence values
:param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values
:param eps: smoothing factor. KLD is not defined in cases in which the distributions contain
zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size.
If `eps=None`, the sample size will be taken from the environment variable `SAMPLE_SIZE`
(which has thus to be set beforehand).
:return: Kullback-Leibler divergence between the two distributions
"""
eps = __check_eps(eps)
smooth_prevs = prevs + eps
smooth_prevs_hat = prevs_hat + eps
return (smooth_prevs*np.log(smooth_prevs/smooth_prevs_hat)).sum(axis=-1)
def mnkld(prevs, prevs_hat, eps=None):
"""Computes the mean Normalized Kullback-Leibler divergence (see :meth:`quapy.error.nkld`)
across the sample pairs. The distributions are smoothed using the `eps` factor
(see :meth:`quapy.error.smooth`).
:param prevs: array-like of shape `(n_samples, n_classes,)` with the true prevalence values
:param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted
prevalence values
:param eps: smoothing factor. NKLD is not defined in cases in which the distributions contain
zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample size.
If `eps=None`, the sample size will be taken from the environment variable `SAMPLE_SIZE`
(which has thus to be set beforehand).
:return: mean Normalized Kullback-Leibler distribution
"""
return nkld(prevs, prevs_hat, eps).mean()
def nkld(prevs, prevs_hat, eps=None):
"""Computes the Normalized Kullback-Leibler divergence between the two prevalence distributions.
Normalized Kullback-Leibler divergence between two prevalence distributions :math:`p` and
:math:`\\hat{p}` is computed as
math:`NKLD(p,\\hat{p}) = 2\\frac{e^{KLD(p,\\hat{p})}}{e^{KLD(p,\\hat{p})}+1}-1`,
where
:math:`\\mathcal{Y}` are the classes of interest.
The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).
:param prevs: array-like of shape `(n_classes,)` with the true prevalence values
:param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values
:param eps: smoothing factor. NKLD is not defined in cases in which the distributions
contain zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the sample
size. If `eps=None`, the sample size will be taken from the environment variable
`SAMPLE_SIZE` (which has thus to be set beforehand).
:return: Normalized Kullback-Leibler divergence between the two distributions
"""
ekld = np.exp(kld(prevs, prevs_hat, eps))
return 2. * ekld / (1 + ekld) - 1.
def mrae(prevs, prevs_hat, eps=None):
"""Computes the mean relative absolute error (see :meth:`quapy.error.rae`) across
the sample pairs. The distributions are smoothed using the `eps` factor (see
:meth:`quapy.error.smooth`).
:param prevs: array-like of shape `(n_samples, n_classes,)` with the true
prevalence values
:param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted
prevalence values
:param eps: smoothing factor. `mrae` is not defined in cases in which the true
distribution contains zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`,
with :math:`T` the sample size. If `eps=None`, the sample size will be taken from
the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand).
:return: mean relative absolute error
"""
return rae(prevs, prevs_hat, eps).mean()
def rae(prevs, prevs_hat, eps=None):
"""Computes the absolute relative error between the two prevalence vectors.
Relative absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}`
is computed as
:math:`RAE(p,\\hat{p})=
\\frac{1}{|\\mathcal{Y}|}\\sum_{y\\in \\mathcal{Y}}\\frac{|\\hat{p}(y)-p(y)|}{p(y)}`,
where :math:`\\mathcal{Y}` are the classes of interest.
The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).
:param prevs: array-like of shape `(n_classes,)` with the true prevalence values
:param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values
:param eps: smoothing factor. `rae` is not defined in cases in which the true distribution
contains zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the
sample size. If `eps=None`, the sample size will be taken from the environment variable
`SAMPLE_SIZE` (which has thus to be set beforehand).
:return: relative absolute error
"""
eps = __check_eps(eps)
prevs = smooth(prevs, eps)
prevs_hat = smooth(prevs_hat, eps)
return (abs(prevs - prevs_hat) / prevs).mean(axis=-1)
def nrae(prevs, prevs_hat, eps=None):
"""Computes the normalized absolute relative error between the two prevalence vectors.
Relative absolute error between two prevalence vectors :math:`p` and :math:`\\hat{p}`
is computed as
:math:`NRAE(p,\\hat{p})= \\frac{RAE(p,\\hat{p})}{z_{RAE}}`,
where
:math:`z_{RAE} = \\frac{|\\mathcal{Y}|-1+\\frac{1-\\min_{y\\in \\mathcal{Y}} p(y)}{\\min_{y\\in \\mathcal{Y}} p(y)}}{|\\mathcal{Y}|}`
and :math:`\\mathcal{Y}` are the classes of interest.
The distributions are smoothed using the `eps` factor (see :meth:`quapy.error.smooth`).
:param prevs: array-like of shape `(n_classes,)` with the true prevalence values
:param prevs_hat: array-like of shape `(n_classes,)` with the predicted prevalence values
:param eps: smoothing factor. `nrae` is not defined in cases in which the true distribution
contains zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`, with :math:`T` the
sample size. If `eps=None`, the sample size will be taken from the environment variable
`SAMPLE_SIZE` (which has thus to be set beforehand).
:return: normalized relative absolute error
"""
eps = __check_eps(eps)
prevs = smooth(prevs, eps)
prevs_hat = smooth(prevs_hat, eps)
min_p = prevs.min(axis=-1)
return (abs(prevs - prevs_hat) / prevs).sum(axis=-1)/(prevs.shape[-1]-1+(1-min_p)/min_p)
def mnrae(prevs, prevs_hat, eps=None):
"""Computes the mean normalized relative absolute error (see :meth:`quapy.error.nrae`) across
the sample pairs. The distributions are smoothed using the `eps` factor (see
:meth:`quapy.error.smooth`).
:param prevs: array-like of shape `(n_samples, n_classes,)` with the true
prevalence values
:param prevs_hat: array-like of shape `(n_samples, n_classes,)` with the predicted
prevalence values
:param eps: smoothing factor. `mnrae` is not defined in cases in which the true
distribution contains zeros; `eps` is typically set to be :math:`\\frac{1}{2T}`,
with :math:`T` the sample size. If `eps=None`, the sample size will be taken from
the environment variable `SAMPLE_SIZE` (which has thus to be set beforehand).
:return: mean normalized relative absolute error
"""
return nrae(prevs, prevs_hat, eps).mean()
def smooth(prevs, eps):
""" Smooths a prevalence distribution with :math:`\\epsilon` (`eps`) as:
:math:`\\underline{p}(y)=\\frac{\\epsilon+p(y)}{\\epsilon|\\mathcal{Y}|+
\\displaystyle\\sum_{y\\in \\mathcal{Y}}p(y)}`
:param prevs: array-like of shape `(n_classes,)` with the true prevalence values
:param eps: smoothing factor
:return: array-like of shape `(n_classes,)` with the smoothed distribution
"""
n_classes = prevs.shape[-1]
return (prevs + eps) / (eps * n_classes + 1)
def __check_eps(eps=None):
if eps is None:
sample_size = qp.environ['SAMPLE_SIZE']
if sample_size is None:
raise ValueError('eps was not defined, and qp.environ["SAMPLE_SIZE"] was not set')
eps = 1. / (2. * sample_size)
return eps
CLASSIFICATION_ERROR = {f1e, acce}
QUANTIFICATION_ERROR = {mae, mnae, mrae, mnrae, mse, mkld, mnkld}
QUANTIFICATION_ERROR_SINGLE = {ae, nae, rae, nrae, se, kld, nkld}
QUANTIFICATION_ERROR_SMOOTH = {kld, nkld, rae, nrae, mkld, mnkld, mrae}
CLASSIFICATION_ERROR_NAMES = {func.__name__ for func in CLASSIFICATION_ERROR}
QUANTIFICATION_ERROR_NAMES = {func.__name__ for func in QUANTIFICATION_ERROR}
QUANTIFICATION_ERROR_SINGLE_NAMES = {func.__name__ for func in QUANTIFICATION_ERROR_SINGLE}
QUANTIFICATION_ERROR_SMOOTH_NAMES = {func.__name__ for func in QUANTIFICATION_ERROR_SMOOTH}
ERROR_NAMES = \
CLASSIFICATION_ERROR_NAMES | QUANTIFICATION_ERROR_NAMES | QUANTIFICATION_ERROR_SINGLE_NAMES
f1_error = f1e
acc_error = acce
mean_absolute_error = mae
absolute_error = ae
mean_relative_absolute_error = mrae
relative_absolute_error = rae
normalized_absolute_error = nae
normalized_relative_absolute_error = nrae
mean_normalized_absolute_error = mnae
mean_normalized_relative_absolute_error = mnrae