1
0
Fork 0
QuaPy/quapy/data/base.py

330 lines
13 KiB
Python

from typing import List, Union
import numpy as np
from scipy.sparse import issparse
from scipy.sparse import vstack
from sklearn.model_selection import train_test_split, RepeatedStratifiedKFold
from quapy.functional import artificial_prevalence_sampling, strprev
class LabelledCollection:
'''
A LabelledCollection is a set of objects each with a label associated to it.
'''
def __init__(self, instances, labels, classes_=None):
"""
:param instances: list of objects
:param labels: list of labels, same length of instances
:param classes_: optional, list of classes from which labels are taken. When used, must contain the set of values used in labels.
"""
if issparse(instances):
self.instances = instances
elif isinstance(instances, list) and len(instances) > 0 and isinstance(instances[0], str):
# lists of strings occupy too much as ndarrays (although python-objects add a heavy overload)
self.instances = np.asarray(instances, dtype=object)
else:
self.instances = np.asarray(instances)
self.labels = np.asarray(labels)
n_docs = len(self)
if classes_ is None:
self.classes_ = np.unique(self.labels)
self.classes_.sort()
else:
self.classes_ = np.unique(np.asarray(classes_))
self.classes_.sort()
if len(set(self.labels).difference(set(classes_))) > 0:
raise ValueError(f'labels ({set(self.labels)}) contain values not included in classes_ ({set(classes_)})')
self.index = {class_: np.arange(n_docs)[self.labels == class_] for class_ in self.classes_}
@classmethod
def load(cls, path: str, loader_func: callable, classes=None):
return LabelledCollection(*loader_func(path), classes)
def __len__(self):
return self.instances.shape[0]
def prevalence(self):
return self.counts() / len(self)
def counts(self):
return np.asarray([len(self.index[class_]) for class_ in self.classes_])
@property
def n_classes(self):
return len(self.classes_)
@property
def binary(self):
return self.n_classes == 2
def sampling_index(self, size, *prevs, shuffle=True):
if len(prevs) == 0: # no prevalence was indicated; returns an index for uniform sampling
return np.random.choice(len(self), size, replace=False)
if len(prevs) == self.n_classes - 1:
prevs = prevs + (1 - sum(prevs),)
assert len(prevs) == self.n_classes, 'unexpected number of prevalences'
assert sum(prevs) == 1, f'prevalences ({prevs}) wrong range (sum={sum(prevs)})'
taken = 0
indexes_sample = []
for i, class_ in enumerate(self.classes_):
if i == self.n_classes - 1:
n_requested = size - taken
else:
n_requested = int(size * prevs[i])
n_candidates = len(self.index[class_])
index_sample = self.index[class_][
np.random.choice(n_candidates, size=n_requested, replace=(n_requested > n_candidates))
] if n_requested > 0 else []
indexes_sample.append(index_sample)
taken += n_requested
indexes_sample = np.concatenate(indexes_sample).astype(int)
if shuffle:
indexes_sample = np.random.permutation(indexes_sample)
return indexes_sample
def uniform_sampling_index(self, size):
return np.random.choice(len(self), size, replace=False)
def uniform_sampling(self, size):
unif_index = self.uniform_sampling_index(size)
return self.sampling_from_index(unif_index)
def sampling(self, size, *prevs, shuffle=True):
prev_index = self.sampling_index(size, *prevs, shuffle=shuffle)
return self.sampling_from_index(prev_index)
def sampling_from_index(self, index):
documents = self.instances[index]
labels = self.labels[index]
return LabelledCollection(documents, labels, classes_=self.classes_)
def split_stratified(self, train_prop=0.6, random_state=None):
# with temp_seed(42):
tr_docs, te_docs, tr_labels, te_labels = \
train_test_split(self.instances, self.labels, train_size=train_prop, stratify=self.labels,
random_state=random_state)
return LabelledCollection(tr_docs, tr_labels), LabelledCollection(te_docs, te_labels)
def artificial_sampling_generator(self, sample_size, n_prevalences=101, repeats=1):
dimensions = self.n_classes
for prevs in artificial_prevalence_sampling(dimensions, n_prevalences, repeats):
yield self.sampling(sample_size, *prevs)
def artificial_sampling_index_generator(self, sample_size, n_prevalences=101, repeats=1):
dimensions = self.n_classes
for prevs in artificial_prevalence_sampling(dimensions, n_prevalences, repeats):
yield self.sampling_index(sample_size, *prevs)
def natural_sampling_generator(self, sample_size, repeats=100):
for _ in range(repeats):
yield self.uniform_sampling(sample_size)
def natural_sampling_index_generator(self, sample_size, repeats=100):
for _ in range(repeats):
yield self.uniform_sampling_index(sample_size)
def __add__(self, other):
if other is None:
return self
elif issparse(self.instances) and issparse(other.instances):
join_instances = vstack([self.instances, other.instances])
elif isinstance(self.instances, list) and isinstance(other.instances, list):
join_instances = self.instances + other.instances
elif isinstance(self.instances, np.ndarray) and isinstance(other.instances, np.ndarray):
join_instances = np.concatenate([self.instances, other.instances])
else:
raise NotImplementedError('unsupported operation for collection types')
labels = np.concatenate([self.labels, other.labels])
return LabelledCollection(join_instances, labels)
@property
def Xy(self):
return self.instances, self.labels
def stats(self, show=True):
ninstances = len(self)
instance_type = type(self.instances[0])
if instance_type == list:
nfeats = len(self.instances[0])
elif instance_type == np.ndarray or issparse(self.instances):
nfeats = self.instances.shape[1]
else:
nfeats = '?'
stats_ = {'instances': ninstances,
'type': instance_type,
'features': nfeats,
'classes': self.classes_,
'prevs': strprev(self.prevalence())}
if show:
print(f'#instances={stats_["instances"]}, type={stats_["type"]}, #features={stats_["features"]}, '
f'#classes={stats_["classes"]}, prevs={stats_["prevs"]}')
return stats_
def kFCV(self, nfolds=5, nrepeats=1, random_state=0):
kf = RepeatedStratifiedKFold(n_splits=nfolds, n_repeats=nrepeats, random_state=random_state)
for train_index, test_index in kf.split(*self.Xy):
train = self.sampling_from_index(train_index)
test = self.sampling_from_index(test_index)
yield train, test
class MultilingualLabelledCollection:
def __init__(self, langs:List[str], labelledCollections:List[LabelledCollection]):
assert len(langs) == len(labelledCollections), 'length mismatch for langs and labelledCollection lists'
assert all(isinstance(lc, LabelledCollection) for lc in labelledCollections), 'unexpected type for labelledCollections'
assert all(labelledCollections[0].classes_ == lc_i.classes_ for lc_i in labelledCollections[1:]), \
'inconsistent classes found for some labelled collections'
self.llc = {l: lc for l, lc in zip(langs, labelledCollections)}
self.classes_=labelledCollections[0].classes_
@classmethod
def fromLangDict(cls, lang_labelledCollection:dict):
return MultilingualLabelledCollection(*list(zip(*list(lang_labelledCollection.items()))))
def langs(self):
return list(sorted(self.llc.keys()))
def __getitem__(self, lang)->LabelledCollection:
return self.llc[lang]
@classmethod
def load(cls, path: str, loader_func: callable):
return MultilingualLabelledCollection(*loader_func(path))
def __len__(self):
return sum(map(len, self.llc.values()))
def prevalence(self):
prev = np.asarray([lc.prevalence() * len(lc) for lc in self.llc.values()]).sum(axis=0)
return prev / prev.sum()
def language_prevalence(self):
lang_count = np.asarray([len(self.llc[l]) for l in self.langs()])
return lang_count / lang_count.sum()
def counts(self):
return np.asarray([lc.counts() for lc in self.llc.values()]).sum(axis=0)
@property
def n_classes(self):
return len(self.classes_)
@property
def binary(self):
return self.n_classes == 2
def __check_langs(self, l_dict:dict):
assert len(l_dict)==len(self.langs()), 'wrong number of languages'
assert all(l in l_dict for l in self.langs()), 'missing languages in l_sizes'
def __check_sizes(self, l_sizes: Union[int,dict]):
assert isinstance(l_sizes, int) or isinstance(l_sizes, dict), 'unexpected type for l_sizes'
if isinstance(l_sizes, int):
return {l:l_sizes for l in self.langs()}
self.__check_langs(l_sizes)
return l_sizes
def sampling_index(self, l_sizes: Union[int,dict], *prevs, shuffle=True):
l_sizes = self.__check_sizes(l_sizes)
return {l:lc.sampling_index(l_sizes[l], *prevs, shuffle=shuffle) for l,lc in self.llc.items()}
def uniform_sampling_index(self, l_sizes: Union[int, dict]):
l_sizes = self.__check_sizes(l_sizes)
return {l: lc.uniform_sampling_index(l_sizes[l]) for l,lc in self.llc.items()}
def uniform_sampling(self, l_sizes: Union[int, dict]):
l_sizes = self.__check_sizes(l_sizes)
return MultilingualLabelledCollection.fromLangDict(
{l: lc.uniform_sampling(l_sizes[l]) for l,lc in self.llc.items()}
)
def sampling(self, l_sizes: Union[int, dict], *prevs, shuffle=True):
l_sizes = self.__check_sizes(l_sizes)
return MultilingualLabelledCollection.fromLangDict(
{l: lc.sampling(l_sizes[l], *prevs, shuffle=shuffle) for l,lc in self.llc.items()}
)
def sampling_from_index(self, l_index:dict):
self.__check_langs(l_index)
return MultilingualLabelledCollection.fromLangDict(
{l: lc.sampling_from_index(l_index[l]) for l,lc in self.llc.items()}
)
def split_stratified(self, train_prop=0.6, random_state=None):
train, test = list(zip(*[self[l].split_stratified(train_prop, random_state) for l in self.langs()]))
return MultilingualLabelledCollection(self.langs(), train), MultilingualLabelledCollection(self.langs(), test)
def asLabelledCollection(self, return_langs=False):
lXy_list = [([l]*len(lc),*lc.Xy) for l, lc in self.llc.items()] # a list with (lang_i, Xi, yi)
ls,Xs,ys = list(zip(*lXy_list))
ls = np.concatenate(ls)
vertstack = vstack if issparse(Xs[0]) else np.vstack
Xs = vertstack(Xs)
ys = np.concatenate(ys)
lc = LabelledCollection(Xs, ys, classes_=self.classes_)
# return lc, ls if return_langs else lc
#
#
#
class Dataset:
def __init__(self, training: LabelledCollection, test: LabelledCollection, vocabulary: dict = None, name=''):
assert set(training.classes_) == set(test.classes_), 'incompatible labels in training and test collections'
self.training = training
self.test = test
self.vocabulary = vocabulary
self.name = name
@classmethod
def SplitStratified(cls, collection: LabelledCollection, train_size=0.6):
return Dataset(*collection.split_stratified(train_prop=train_size))
@property
def classes_(self):
return self.training.classes_
@property
def n_classes(self):
return self.training.n_classes
@property
def binary(self):
return self.training.binary
@classmethod
def load(cls, train_path, test_path, loader_func: callable):
training = LabelledCollection.load(train_path, loader_func)
test = LabelledCollection.load(test_path, loader_func)
return Dataset(training, test)
@property
def vocabulary_size(self):
return len(self.vocabulary)
def stats(self):
tr_stats = self.training.stats(show=False)
te_stats = self.test.stats(show=False)
print(f'Dataset={self.name} #tr-instances={tr_stats["instances"]}, #te-instances={te_stats["instances"]}, '
f'type={tr_stats["type"]}, #features={tr_stats["features"]}, #classes={tr_stats["classes"]}, '
f'tr-prevs={tr_stats["prevs"]}, te-prevs={te_stats["prevs"]}')
return {'train': tr_stats, 'test': te_stats}
@classmethod
def kFCV(cls, data: LabelledCollection, nfolds=5, nrepeats=1, random_state=0):
for i, (train, test) in enumerate(data.kFCV(nfolds=nfolds, nrepeats=nrepeats, random_state=random_state)):
yield Dataset(train, test, name=f'fold {(i % nfolds) + 1}/{nfolds} (round={(i // nfolds) + 1})')
def isbinary(data):
if isinstance(data, Dataset) or isinstance(data, LabelledCollection):
return data.binary
return False