forked from moreo/QuaPy
694 lines
30 KiB
Python
694 lines
30 KiB
Python
import itertools
|
||
from copy import deepcopy
|
||
from typing import Union
|
||
import numpy as np
|
||
from sklearn.linear_model import LogisticRegression
|
||
from sklearn.metrics import f1_score, make_scorer, accuracy_score
|
||
from sklearn.model_selection import GridSearchCV, cross_val_predict
|
||
from tqdm import tqdm
|
||
|
||
import quapy as qp
|
||
from quapy import functional as F
|
||
from quapy.data import LabelledCollection
|
||
from quapy.model_selection import GridSearchQ
|
||
from quapy.method.base import BaseQuantifier, BinaryQuantifier
|
||
from quapy.method.aggregative import CC, ACC, PACC, HDy, EMQ, AggregativeQuantifier
|
||
|
||
try:
|
||
from . import _neural
|
||
except ModuleNotFoundError:
|
||
_neural = None
|
||
|
||
|
||
if _neural:
|
||
QuaNet = _neural.QuaNetTrainer
|
||
else:
|
||
QuaNet = "QuaNet is not available due to missing torch package"
|
||
|
||
|
||
class MedianEstimator2(BinaryQuantifier):
|
||
"""
|
||
This method is a meta-quantifier that returns, as the estimated class prevalence values, the median of the
|
||
estimation returned by differently (hyper)parameterized base quantifiers.
|
||
The median of unit-vectors is only guaranteed to be a unit-vector for n=2 dimensions,
|
||
i.e., in cases of binary quantification.
|
||
|
||
:param base_quantifier: the base, binary quantifier
|
||
:param random_state: a seed to be set before fitting any base quantifier (default None)
|
||
:param param_grid: the grid or parameters towards which the median will be computed
|
||
:param n_jobs: number of parllel workes
|
||
"""
|
||
def __init__(self, base_quantifier: BinaryQuantifier, param_grid: dict, random_state=None, n_jobs=None):
|
||
self.base_quantifier = base_quantifier
|
||
self.param_grid = param_grid
|
||
self.random_state = random_state
|
||
self.n_jobs = qp._get_njobs(n_jobs)
|
||
|
||
def get_params(self, deep=True):
|
||
return self.base_quantifier.get_params(deep)
|
||
|
||
def set_params(self, **params):
|
||
self.base_quantifier.set_params(**params)
|
||
|
||
def _delayed_fit(self, args):
|
||
with qp.util.temp_seed(self.random_state):
|
||
params, training = args
|
||
model = deepcopy(self.base_quantifier)
|
||
model.set_params(**params)
|
||
model.fit(training)
|
||
return model
|
||
|
||
def fit(self, training: LabelledCollection):
|
||
self._check_binary(training, self.__class__.__name__)
|
||
|
||
configs = qp.model_selection.expand_grid(self.param_grid)
|
||
self.models = qp.util.parallel(
|
||
self._delayed_fit,
|
||
((params, training) for params in configs),
|
||
seed=qp.environ.get('_R_SEED', None),
|
||
n_jobs=self.n_jobs
|
||
)
|
||
return self
|
||
|
||
def _delayed_predict(self, args):
|
||
model, instances = args
|
||
return model.quantify(instances)
|
||
|
||
def quantify(self, instances):
|
||
prev_preds = qp.util.parallel(
|
||
self._delayed_predict,
|
||
((model, instances) for model in self.models),
|
||
seed=qp.environ.get('_R_SEED', None),
|
||
n_jobs=self.n_jobs
|
||
)
|
||
prev_preds = np.asarray(prev_preds)
|
||
return np.median(prev_preds, axis=0)
|
||
|
||
|
||
class MedianEstimator(BinaryQuantifier):
|
||
"""
|
||
This method is a meta-quantifier that returns, as the estimated class prevalence values, the median of the
|
||
estimation returned by differently (hyper)parameterized base quantifiers.
|
||
The median of unit-vectors is only guaranteed to be a unit-vector for n=2 dimensions,
|
||
i.e., in cases of binary quantification.
|
||
|
||
:param base_quantifier: the base, binary quantifier
|
||
:param random_state: a seed to be set before fitting any base quantifier (default None)
|
||
:param param_grid: the grid or parameters towards which the median will be computed
|
||
:param n_jobs: number of parllel workes
|
||
"""
|
||
def __init__(self, base_quantifier: BinaryQuantifier, param_grid: dict, random_state=None, n_jobs=None):
|
||
self.base_quantifier = base_quantifier
|
||
self.param_grid = param_grid
|
||
self.random_state = random_state
|
||
self.n_jobs = qp._get_njobs(n_jobs)
|
||
|
||
def get_params(self, deep=True):
|
||
return self.base_quantifier.get_params(deep)
|
||
|
||
def set_params(self, **params):
|
||
self.base_quantifier.set_params(**params)
|
||
|
||
def _delayed_fit(self, args):
|
||
with qp.util.temp_seed(self.random_state):
|
||
params, training = args
|
||
model = deepcopy(self.base_quantifier)
|
||
model.set_params(**params)
|
||
model.fit(training)
|
||
return model
|
||
|
||
def _delayed_fit_classifier(self, args):
|
||
with qp.util.temp_seed(self.random_state):
|
||
cls_params, training = args
|
||
model = deepcopy(self.base_quantifier)
|
||
model.set_params(**cls_params)
|
||
predictions = model.classifier_fit_predict(training, predict_on=model.val_split)
|
||
return (model, predictions)
|
||
|
||
def _delayed_fit_aggregation(self, args):
|
||
with qp.util.temp_seed(self.random_state):
|
||
((model, predictions), q_params), training = args
|
||
model = deepcopy(model)
|
||
model.set_params(**q_params)
|
||
model.aggregation_fit(predictions, training)
|
||
return model
|
||
|
||
|
||
def fit(self, training: LabelledCollection):
|
||
self._check_binary(training, self.__class__.__name__)
|
||
|
||
if isinstance(self.base_quantifier, AggregativeQuantifier):
|
||
cls_configs, q_configs = qp.model_selection.group_params(self.param_grid)
|
||
|
||
if len(cls_configs) > 1:
|
||
models_preds = qp.util.parallel(
|
||
self._delayed_fit_classifier,
|
||
((params, training) for params in cls_configs),
|
||
seed=qp.environ.get('_R_SEED', None),
|
||
n_jobs=self.n_jobs,
|
||
asarray=False
|
||
)
|
||
else:
|
||
model = self.base_quantifier
|
||
model.set_params(**cls_configs[0])
|
||
predictions = model.classifier_fit_predict(training, predict_on=model.val_split)
|
||
models_preds = [(model, predictions)]
|
||
|
||
self.models = qp.util.parallel(
|
||
self._delayed_fit_aggregation,
|
||
((setup, training) for setup in itertools.product(models_preds, q_configs)),
|
||
seed=qp.environ.get('_R_SEED', None),
|
||
n_jobs=self.n_jobs,
|
||
asarray=False
|
||
)
|
||
else:
|
||
configs = qp.model_selection.expand_grid(self.param_grid)
|
||
self.models = qp.util.parallel(
|
||
self._delayed_fit,
|
||
((params, training) for params in configs),
|
||
seed=qp.environ.get('_R_SEED', None),
|
||
n_jobs=self.n_jobs,
|
||
asarray=False
|
||
)
|
||
return self
|
||
|
||
def _delayed_predict(self, args):
|
||
model, instances = args
|
||
return model.quantify(instances)
|
||
|
||
def quantify(self, instances):
|
||
prev_preds = qp.util.parallel(
|
||
self._delayed_predict,
|
||
((model, instances) for model in self.models),
|
||
seed=qp.environ.get('_R_SEED', None),
|
||
n_jobs=self.n_jobs,
|
||
asarray=False
|
||
)
|
||
prev_preds = np.asarray(prev_preds)
|
||
return np.median(prev_preds, axis=0)
|
||
|
||
|
||
class Ensemble(BaseQuantifier):
|
||
VALID_POLICIES = {'ave', 'ptr', 'ds'} | qp.error.QUANTIFICATION_ERROR_NAMES
|
||
|
||
"""
|
||
Implementation of the Ensemble methods for quantification described by
|
||
`Pérez-Gállego et al., 2017 <https://www.sciencedirect.com/science/article/pii/S1566253516300628>`_
|
||
and
|
||
`Pérez-Gállego et al., 2019 <https://www.sciencedirect.com/science/article/pii/S1566253517303652>`_.
|
||
The policies implemented include:
|
||
|
||
- Average (`policy='ave'`): computes class prevalence estimates as the average of the estimates
|
||
returned by the base quantifiers.
|
||
- Training Prevalence (`policy='ptr'`): applies a dynamic selection to the ensemble’s members by retaining only
|
||
those members such that the class prevalence values in the samples they use as training set are closest to
|
||
preliminary class prevalence estimates computed as the average of the estimates of all the members. The final
|
||
estimate is recomputed by considering only the selected members.
|
||
- Distribution Similarity (`policy='ds'`): performs a dynamic selection of base members by retaining
|
||
the members trained on samples whose distribution of posterior probabilities is closest, in terms of the
|
||
Hellinger Distance, to the distribution of posterior probabilities in the test sample
|
||
- Accuracy (`policy='<valid error name>'`): performs a static selection of the ensemble members by
|
||
retaining those that minimize a quantification error measure, which is passed as an argument.
|
||
|
||
Example:
|
||
|
||
>>> model = Ensemble(quantifier=ACC(LogisticRegression()), size=30, policy='ave', n_jobs=-1)
|
||
|
||
:param quantifier: base quantification member of the ensemble
|
||
:param size: number of members
|
||
:param red_size: number of members to retain after selection (depending on the policy)
|
||
:param min_pos: minimum number of positive instances to consider a sample as valid
|
||
:param policy: the selection policy; available policies include: `ave` (default), `ptr`, `ds`, and accuracy
|
||
(which is instantiated via a valid error name, e.g., `mae`)
|
||
:param max_sample_size: maximum number of instances to consider in the samples (set to None
|
||
to indicate no limit, default)
|
||
:param val_split: a float in range (0,1) indicating the proportion of data to be used as a stratified held-out
|
||
validation split, or a :class:`quapy.data.base.LabelledCollection` (the split itself).
|
||
:param n_jobs: number of parallel workers (default 1)
|
||
:param verbose: set to True (default is False) to get some information in standard output
|
||
"""
|
||
|
||
def __init__(self,
|
||
quantifier: BaseQuantifier,
|
||
size=50,
|
||
red_size=25,
|
||
min_pos=5,
|
||
policy='ave',
|
||
max_sample_size=None,
|
||
val_split:Union[qp.data.LabelledCollection, float]=None,
|
||
n_jobs=None,
|
||
verbose=False):
|
||
assert policy in Ensemble.VALID_POLICIES, \
|
||
f'unknown policy={policy}; valid are {Ensemble.VALID_POLICIES}'
|
||
assert max_sample_size is None or max_sample_size > 0, \
|
||
'wrong value for max_sample_size; set it to a positive number or None'
|
||
self.base_quantifier = quantifier
|
||
self.size = size
|
||
self.min_pos = min_pos
|
||
self.red_size = red_size
|
||
self.policy = policy
|
||
self.val_split = val_split
|
||
self.n_jobs = qp._get_njobs(n_jobs)
|
||
self.post_proba_fn = None
|
||
self.verbose = verbose
|
||
self.max_sample_size = max_sample_size
|
||
|
||
def _sout(self, msg):
|
||
if self.verbose:
|
||
print('[Ensemble]' + msg)
|
||
|
||
def fit(self, data: qp.data.LabelledCollection, val_split: Union[qp.data.LabelledCollection, float] = None):
|
||
|
||
if self.policy == 'ds' and not data.binary:
|
||
raise ValueError(f'ds policy is only defined for binary quantification, but this dataset is not binary')
|
||
|
||
if val_split is None:
|
||
val_split = self.val_split
|
||
|
||
# randomly chooses the prevalences for each member of the ensemble (preventing classes with less than
|
||
# min_pos positive examples)
|
||
sample_size = len(data) if self.max_sample_size is None else min(self.max_sample_size, len(data))
|
||
prevs = [_draw_simplex(ndim=data.n_classes, min_val=self.min_pos / sample_size) for _ in range(self.size)]
|
||
|
||
posteriors = None
|
||
if self.policy == 'ds':
|
||
# precompute the training posterior probabilities
|
||
posteriors, self.post_proba_fn = self._ds_policy_get_posteriors(data)
|
||
|
||
is_static_policy = (self.policy in qp.error.QUANTIFICATION_ERROR_NAMES)
|
||
|
||
args = (
|
||
(self.base_quantifier, data, val_split, prev, posteriors, is_static_policy, self.verbose, sample_size)
|
||
for prev in prevs
|
||
)
|
||
self.ensemble = qp.util.parallel(
|
||
_delayed_new_instance,
|
||
tqdm(args, desc='fitting ensamble', total=self.size) if self.verbose else args,
|
||
asarray=False,
|
||
n_jobs=self.n_jobs)
|
||
|
||
# static selection policy (the name of a quantification-oriented error function to minimize)
|
||
if self.policy in qp.error.QUANTIFICATION_ERROR_NAMES:
|
||
self._accuracy_policy(error_name=self.policy)
|
||
|
||
self._sout('Fit [Done]')
|
||
return self
|
||
|
||
def quantify(self, instances):
|
||
predictions = np.asarray(
|
||
qp.util.parallel(_delayed_quantify, ((Qi, instances) for Qi in self.ensemble), n_jobs=self.n_jobs)
|
||
)
|
||
|
||
if self.policy == 'ptr':
|
||
predictions = self._ptr_policy(predictions)
|
||
elif self.policy == 'ds':
|
||
predictions = self._ds_policy(predictions, instances)
|
||
|
||
predictions = np.mean(predictions, axis=0)
|
||
return F.normalize_prevalence(predictions)
|
||
|
||
def set_params(self, **parameters):
|
||
"""
|
||
This function should not be used within :class:`quapy.model_selection.GridSearchQ` (is here for compatibility
|
||
with the abstract class).
|
||
Instead, use `Ensemble(GridSearchQ(q),...)`, with `q` a Quantifier (recommended), or
|
||
`Ensemble(Q(GridSearchCV(l)))` with `Q` a quantifier class that has a classifier `l` optimized for
|
||
classification (not recommended).
|
||
|
||
:param parameters: dictionary
|
||
:return: raises an Exception
|
||
"""
|
||
raise NotImplementedError(f'{self.__class__.__name__} should not be used within GridSearchQ; '
|
||
f'instead, use Ensemble(GridSearchQ(q),...), with q a Quantifier (recommended), '
|
||
f'or Ensemble(Q(GridSearchCV(l))) with Q a quantifier class that has a classifier '
|
||
f'l optimized for classification (not recommended).')
|
||
|
||
def get_params(self, deep=True):
|
||
"""
|
||
This function should not be used within :class:`quapy.model_selection.GridSearchQ` (is here for compatibility
|
||
with the abstract class).
|
||
Instead, use `Ensemble(GridSearchQ(q),...)`, with `q` a Quantifier (recommended), or
|
||
`Ensemble(Q(GridSearchCV(l)))` with `Q` a quantifier class that has a classifier `l` optimized for
|
||
classification (not recommended).
|
||
|
||
:param deep: for compatibility with scikit-learn
|
||
:return: raises an Exception
|
||
"""
|
||
|
||
raise NotImplementedError()
|
||
|
||
def _accuracy_policy(self, error_name):
|
||
"""
|
||
Selects the red_size best performant quantifiers in a static way (i.e., dropping all non-selected instances).
|
||
For each model in the ensemble, the performance is measured in terms of _error_name_ on the quantification of
|
||
the samples used for training the rest of the models in the ensemble.
|
||
"""
|
||
from quapy.evaluation import evaluate_on_samples
|
||
error = qp.error.from_name(error_name)
|
||
tests = [m[3] for m in self.ensemble]
|
||
scores = []
|
||
for i, model in enumerate(self.ensemble):
|
||
scores.append(evaluate_on_samples(model[0], tests[:i] + tests[i + 1:], error))
|
||
order = np.argsort(scores)
|
||
|
||
self.ensemble = _select_k(self.ensemble, order, k=self.red_size)
|
||
|
||
def _ptr_policy(self, predictions):
|
||
"""
|
||
Selects the predictions made by models that have been trained on samples with a prevalence that is most similar
|
||
to a first approximation of the test prevalence as made by all models in the ensemble.
|
||
"""
|
||
test_prev_estim = predictions.mean(axis=0)
|
||
tr_prevs = [m[1] for m in self.ensemble]
|
||
ptr_differences = [qp.error.mse(ptr_i, test_prev_estim) for ptr_i in tr_prevs]
|
||
order = np.argsort(ptr_differences)
|
||
return _select_k(predictions, order, k=self.red_size)
|
||
|
||
def _ds_policy_get_posteriors(self, data: LabelledCollection):
|
||
"""
|
||
In the original article, there are some aspects regarding this method that are not mentioned. The paper says
|
||
that the distribution of posterior probabilities from training and test examples is compared by means of the
|
||
Hellinger Distance. However, how these posterior probabilities are generated is not specified. In the article,
|
||
a Logistic Regressor (LR) is used as the classifier device and that could be used for this purpose. However, in
|
||
general, a Quantifier is not necessarily an instance of Aggreggative Probabilistic Quantifiers, and so, that the
|
||
quantifier builds on top of a probabilistic classifier cannot be given for granted. Additionally, it would not
|
||
be correct to generate the posterior probabilities for training instances that have concurred in training the
|
||
classifier that generates them.
|
||
|
||
This function thus generates the posterior probabilities for all training documents in a cross-validation way,
|
||
using LR with hyperparameters that have previously been optimized via grid search in 5FCV.
|
||
|
||
:param data: a LabelledCollection
|
||
:return: (P,f,) where P is an ndarray containing the posterior probabilities of the training data, generated via
|
||
cross-validation and using an optimized LR, and the function to be used in order to generate posterior
|
||
probabilities for test instances.
|
||
"""
|
||
|
||
X, y = data.Xy
|
||
lr_base = LogisticRegression(class_weight='balanced', max_iter=1000)
|
||
|
||
param_grid = {'C': np.logspace(-4, 4, 9)}
|
||
optim = GridSearchCV(lr_base, param_grid=param_grid, cv=5, n_jobs=self.n_jobs, refit=True).fit(X, y)
|
||
|
||
posteriors = cross_val_predict(optim.best_estimator_, X, y, cv=5, n_jobs=self.n_jobs, method='predict_proba')
|
||
posteriors_generator = optim.best_estimator_.predict_proba
|
||
|
||
return posteriors, posteriors_generator
|
||
|
||
def _ds_policy(self, predictions, test):
|
||
test_posteriors = self.post_proba_fn(test)
|
||
test_distribution = get_probability_distribution(test_posteriors)
|
||
tr_distributions = [m[2] for m in self.ensemble]
|
||
dist = [F.HellingerDistance(tr_dist_i, test_distribution) for tr_dist_i in tr_distributions]
|
||
order = np.argsort(dist)
|
||
return _select_k(predictions, order, k=self.red_size)
|
||
|
||
@property
|
||
def aggregative(self):
|
||
"""
|
||
Indicates that the quantifier is not aggregative.
|
||
|
||
:return: False
|
||
"""
|
||
return False
|
||
|
||
@property
|
||
def probabilistic(self):
|
||
"""
|
||
Indicates that the quantifier is not probabilistic.
|
||
|
||
:return: False
|
||
"""
|
||
return False
|
||
|
||
|
||
def get_probability_distribution(posterior_probabilities, bins=8):
|
||
"""
|
||
Gets a histogram out of the posterior probabilities (only for the binary case).
|
||
|
||
:param posterior_probabilities: array-like of shape `(n_instances, 2,)`
|
||
:param bins: integer
|
||
:return: `np.ndarray` with the relative frequencies for each bin (for the positive class only)
|
||
"""
|
||
assert posterior_probabilities.shape[1] == 2, 'the posterior probabilities do not seem to be for a binary problem'
|
||
posterior_probabilities = posterior_probabilities[:, 1] # take the positive posteriors only
|
||
distribution, _ = np.histogram(posterior_probabilities, bins=bins, range=(0, 1), density=True)
|
||
return distribution
|
||
|
||
|
||
def _select_k(elements, order, k):
|
||
return [elements[idx] for idx in order[:k]]
|
||
|
||
|
||
def _delayed_new_instance(args):
|
||
base_quantifier, data, val_split, prev, posteriors, keep_samples, verbose, sample_size = args
|
||
if verbose:
|
||
print(f'\tfit-start for prev {F.strprev(prev)}, sample_size={sample_size}')
|
||
model = deepcopy(base_quantifier)
|
||
|
||
if val_split is not None:
|
||
if isinstance(val_split, float):
|
||
assert 0 < val_split < 1, 'val_split should be in (0,1)'
|
||
data, val_split = data.split_stratified(train_prop=1 - val_split)
|
||
|
||
sample_index = data.sampling_index(sample_size, *prev)
|
||
sample = data.sampling_from_index(sample_index)
|
||
|
||
if val_split is not None:
|
||
model.fit(sample, val_split=val_split)
|
||
else:
|
||
model.fit(sample)
|
||
|
||
tr_prevalence = sample.prevalence()
|
||
tr_distribution = get_probability_distribution(posteriors[sample_index]) if (posteriors is not None) else None
|
||
|
||
if verbose:
|
||
print(f'\t\--fit-ended for prev {F.strprev(prev)}')
|
||
|
||
return (model, tr_prevalence, tr_distribution, sample if keep_samples else None)
|
||
|
||
|
||
def _delayed_quantify(args):
|
||
quantifier, instances = args
|
||
return quantifier[0].quantify(instances)
|
||
|
||
|
||
def _draw_simplex(ndim, min_val, max_trials=100):
|
||
"""
|
||
Returns a uniform sampling from the ndim-dimensional simplex but guarantees that all dimensions
|
||
are >= min_class_prev (for min_val>0, this makes the sampling not truly uniform)
|
||
|
||
:param ndim: number of dimensions of the simplex
|
||
:param min_val: minimum class prevalence allowed. If less than 1/ndim a ValueError will be throw since
|
||
there is no possible solution.
|
||
:return: a sample from the ndim-dimensional simplex that is uniform in S(ndim)-R where S(ndim) is the simplex
|
||
and R is the simplex subset containing dimensions lower than min_val
|
||
"""
|
||
if min_val >= 1 / ndim:
|
||
raise ValueError(f'no sample can be draw from the {ndim}-dimensional simplex so that '
|
||
f'all its values are >={min_val} (try with a larger value for min_pos)')
|
||
trials = 0
|
||
while True:
|
||
u = F.uniform_simplex_sampling(ndim)
|
||
if all(u >= min_val):
|
||
return u
|
||
trials += 1
|
||
if trials >= max_trials:
|
||
raise ValueError(f'it looks like finding a random simplex with all its dimensions being'
|
||
f'>= {min_val} is unlikely (it failed after {max_trials} trials)')
|
||
|
||
|
||
def _instantiate_ensemble(classifier, base_quantifier_class, param_grid, optim, param_model_sel, **kwargs):
|
||
if optim is None:
|
||
base_quantifier = base_quantifier_class(classifier)
|
||
elif optim in qp.error.CLASSIFICATION_ERROR:
|
||
if optim == qp.error.f1e:
|
||
scoring = make_scorer(f1_score)
|
||
elif optim == qp.error.acce:
|
||
scoring = make_scorer(accuracy_score)
|
||
classifier = GridSearchCV(classifier, param_grid, scoring=scoring)
|
||
base_quantifier = base_quantifier_class(classifier)
|
||
else:
|
||
base_quantifier = GridSearchQ(base_quantifier_class(classifier),
|
||
param_grid=param_grid,
|
||
**param_model_sel,
|
||
error=optim)
|
||
|
||
return Ensemble(base_quantifier, **kwargs)
|
||
|
||
|
||
def _check_error(error):
|
||
if error is None:
|
||
return None
|
||
if error in qp.error.QUANTIFICATION_ERROR or error in qp.error.CLASSIFICATION_ERROR:
|
||
return error
|
||
elif isinstance(error, str):
|
||
return qp.error.from_name(error)
|
||
else:
|
||
raise ValueError(f'unexpected error type; must either be a callable function or a str representing\n'
|
||
f'the name of an error function in {qp.error.ERROR_NAMES}')
|
||
|
||
|
||
def ensembleFactory(classifier, base_quantifier_class, param_grid=None, optim=None, param_model_sel: dict = None,
|
||
**kwargs):
|
||
"""
|
||
Ensemble factory. Provides a unified interface for instantiating ensembles that can be optimized (via model
|
||
selection for quantification) for a given evaluation metric using :class:`quapy.model_selection.GridSearchQ`.
|
||
If the evaluation metric is classification-oriented
|
||
(instead of quantification-oriented), then the optimization will be carried out via sklearn's
|
||
`GridSearchCV <https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html>`_.
|
||
|
||
Example to instantiate an :class:`Ensemble` based on :class:`quapy.method.aggregative.PACC`
|
||
in which the base members are optimized for :meth:`quapy.error.mae` via
|
||
:class:`quapy.model_selection.GridSearchQ`. The ensemble follows the policy `Accuracy` based
|
||
on :meth:`quapy.error.mae` (the same measure being optimized),
|
||
meaning that a static selection of members of the ensemble is made based on their performance
|
||
in terms of this error.
|
||
|
||
>>> param_grid = {
|
||
>>> 'C': np.logspace(-3,3,7),
|
||
>>> 'class_weight': ['balanced', None]
|
||
>>> }
|
||
>>> param_mod_sel = {
|
||
>>> 'sample_size': 500,
|
||
>>> 'protocol': 'app'
|
||
>>> }
|
||
>>> common={
|
||
>>> 'max_sample_size': 1000,
|
||
>>> 'n_jobs': -1,
|
||
>>> 'param_grid': param_grid,
|
||
>>> 'param_mod_sel': param_mod_sel,
|
||
>>> }
|
||
>>>
|
||
>>> ensembleFactory(LogisticRegression(), PACC, optim='mae', policy='mae', **common)
|
||
|
||
:param classifier: sklearn's Estimator that generates a classifier
|
||
:param base_quantifier_class: a class of quantifiers
|
||
:param param_grid: a dictionary with the grid of parameters to optimize for
|
||
:param optim: a valid quantification or classification error, or a string name of it
|
||
:param param_model_sel: a dictionary containing any keyworded argument to pass to
|
||
:class:`quapy.model_selection.GridSearchQ`
|
||
:param kwargs: kwargs for the class :class:`Ensemble`
|
||
:return: an instance of :class:`Ensemble`
|
||
"""
|
||
if optim is not None:
|
||
if param_grid is None:
|
||
raise ValueError(f'param_grid is None but optim was requested.')
|
||
if param_model_sel is None:
|
||
raise ValueError(f'param_model_sel is None but optim was requested.')
|
||
error = _check_error(optim)
|
||
return _instantiate_ensemble(classifier, base_quantifier_class, param_grid, error, param_model_sel, **kwargs)
|
||
|
||
|
||
def ECC(classifier, param_grid=None, optim=None, param_mod_sel=None, **kwargs):
|
||
"""
|
||
Implements an ensemble of :class:`quapy.method.aggregative.CC` quantifiers, as used by
|
||
`Pérez-Gállego et al., 2019 <https://www.sciencedirect.com/science/article/pii/S1566253517303652>`_.
|
||
|
||
Equivalent to:
|
||
|
||
>>> ensembleFactory(classifier, CC, param_grid, optim, param_mod_sel, **kwargs)
|
||
|
||
See :meth:`ensembleFactory` for further details.
|
||
|
||
:param classifier: sklearn's Estimator that generates a classifier
|
||
:param param_grid: a dictionary with the grid of parameters to optimize for
|
||
:param optim: a valid quantification or classification error, or a string name of it
|
||
:param param_model_sel: a dictionary containing any keyworded argument to pass to
|
||
:class:`quapy.model_selection.GridSearchQ`
|
||
:param kwargs: kwargs for the class :class:`Ensemble`
|
||
:return: an instance of :class:`Ensemble`
|
||
"""
|
||
|
||
return ensembleFactory(classifier, CC, param_grid, optim, param_mod_sel, **kwargs)
|
||
|
||
|
||
def EACC(classifier, param_grid=None, optim=None, param_mod_sel=None, **kwargs):
|
||
"""
|
||
Implements an ensemble of :class:`quapy.method.aggregative.ACC` quantifiers, as used by
|
||
`Pérez-Gállego et al., 2019 <https://www.sciencedirect.com/science/article/pii/S1566253517303652>`_.
|
||
|
||
Equivalent to:
|
||
|
||
>>> ensembleFactory(classifier, ACC, param_grid, optim, param_mod_sel, **kwargs)
|
||
|
||
See :meth:`ensembleFactory` for further details.
|
||
|
||
:param classifier: sklearn's Estimator that generates a classifier
|
||
:param param_grid: a dictionary with the grid of parameters to optimize for
|
||
:param optim: a valid quantification or classification error, or a string name of it
|
||
:param param_model_sel: a dictionary containing any keyworded argument to pass to
|
||
:class:`quapy.model_selection.GridSearchQ`
|
||
:param kwargs: kwargs for the class :class:`Ensemble`
|
||
:return: an instance of :class:`Ensemble`
|
||
"""
|
||
|
||
return ensembleFactory(classifier, ACC, param_grid, optim, param_mod_sel, **kwargs)
|
||
|
||
|
||
def EPACC(classifier, param_grid=None, optim=None, param_mod_sel=None, **kwargs):
|
||
"""
|
||
Implements an ensemble of :class:`quapy.method.aggregative.PACC` quantifiers.
|
||
|
||
Equivalent to:
|
||
|
||
>>> ensembleFactory(classifier, PACC, param_grid, optim, param_mod_sel, **kwargs)
|
||
|
||
See :meth:`ensembleFactory` for further details.
|
||
|
||
:param classifier: sklearn's Estimator that generates a classifier
|
||
:param param_grid: a dictionary with the grid of parameters to optimize for
|
||
:param optim: a valid quantification or classification error, or a string name of it
|
||
:param param_model_sel: a dictionary containing any keyworded argument to pass to
|
||
:class:`quapy.model_selection.GridSearchQ`
|
||
:param kwargs: kwargs for the class :class:`Ensemble`
|
||
:return: an instance of :class:`Ensemble`
|
||
"""
|
||
|
||
return ensembleFactory(classifier, PACC, param_grid, optim, param_mod_sel, **kwargs)
|
||
|
||
|
||
def EHDy(classifier, param_grid=None, optim=None, param_mod_sel=None, **kwargs):
|
||
"""
|
||
Implements an ensemble of :class:`quapy.method.aggregative.HDy` quantifiers, as used by
|
||
`Pérez-Gállego et al., 2019 <https://www.sciencedirect.com/science/article/pii/S1566253517303652>`_.
|
||
|
||
Equivalent to:
|
||
|
||
>>> ensembleFactory(classifier, HDy, param_grid, optim, param_mod_sel, **kwargs)
|
||
|
||
See :meth:`ensembleFactory` for further details.
|
||
|
||
:param classifier: sklearn's Estimator that generates a classifier
|
||
:param param_grid: a dictionary with the grid of parameters to optimize for
|
||
:param optim: a valid quantification or classification error, or a string name of it
|
||
:param param_model_sel: a dictionary containing any keyworded argument to pass to
|
||
:class:`quapy.model_selection.GridSearchQ`
|
||
:param kwargs: kwargs for the class :class:`Ensemble`
|
||
:return: an instance of :class:`Ensemble`
|
||
"""
|
||
|
||
return ensembleFactory(classifier, HDy, param_grid, optim, param_mod_sel, **kwargs)
|
||
|
||
|
||
def EEMQ(classifier, param_grid=None, optim=None, param_mod_sel=None, **kwargs):
|
||
"""
|
||
Implements an ensemble of :class:`quapy.method.aggregative.EMQ` quantifiers.
|
||
|
||
Equivalent to:
|
||
|
||
>>> ensembleFactory(classifier, EMQ, param_grid, optim, param_mod_sel, **kwargs)
|
||
|
||
See :meth:`ensembleFactory` for further details.
|
||
|
||
:param classifier: sklearn's Estimator that generates a classifier
|
||
:param param_grid: a dictionary with the grid of parameters to optimize for
|
||
:param optim: a valid quantification or classification error, or a string name of it
|
||
:param param_model_sel: a dictionary containing any keyworded argument to pass to
|
||
:class:`quapy.model_selection.GridSearchQ`
|
||
:param kwargs: kwargs for the class :class:`Ensemble`
|
||
:return: an instance of :class:`Ensemble`
|
||
"""
|
||
|
||
return ensembleFactory(classifier, EMQ, param_grid, optim, param_mod_sel, **kwargs)
|