1
0
Fork 0
QuaPy/distribution_matching/method_kdey.py

322 lines
15 KiB
Python

from cgi import test
import os
import sys
from typing import Union, Callable
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.linear_model import LogisticRegression
import pandas as pd
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KernelDensity
import quapy as qp
from quapy.data import LabelledCollection
from quapy.protocol import APP, UPP
from quapy.method.aggregative import AggregativeProbabilisticQuantifier, _training_helper, cross_generate_predictions, \
DistributionMatching, _get_divergence
import quapy.functional as F
import scipy
from scipy import optimize
#from statsmodels.nonparametric.kernel_density import KDEMultivariateConditional
# TODO: optimize the bandwidth automatically
# TODO: think of a MMD-y variant, i.e., a MMD variant that uses the points in the simplex and possibly any non-linear kernel
class KDEy(AggregativeProbabilisticQuantifier):
BANDWIDTH_METHOD = ['auto', 'scott', 'silverman']
ENGINE = ['scipy', 'sklearn', 'statsmodels']
TARGET = ['min_divergence', 'min_divergence_uniform', 'max_likelihood']
def __init__(self, classifier: BaseEstimator, val_split=0.4, divergence: Union[str, Callable]='L2',
bandwidth='scott', engine='sklearn', target='min_divergence', n_jobs=None, random_state=0, montecarlo_trials=1000):
assert bandwidth in KDEy.BANDWIDTH_METHOD or isinstance(bandwidth, float), \
f'unknown bandwidth_method, valid ones are {KDEy.BANDWIDTH_METHOD}'
assert engine in KDEy.ENGINE, f'unknown engine, valid ones are {KDEy.ENGINE}'
assert target in KDEy.TARGET, f'unknown target, valid ones are {KDEy.TARGET}'
assert target=='max_likelihood' or divergence in ['KLD', 'HD', 'JS'], \
'in this version I will only allow KLD or squared HD as a divergence'
self.classifier = classifier
self.val_split = val_split
self.divergence = divergence
self.bandwidth = bandwidth
self.engine = engine
self.target = target
self.n_jobs = n_jobs
self.random_state=random_state
self.montecarlo_trials = montecarlo_trials
def search_bandwidth_maxlikelihood(self, posteriors, labels):
grid = {'bandwidth': np.linspace(0.001, 0.2, 100)}
search = GridSearchCV(
KernelDensity(), param_grid=grid, n_jobs=-1, cv=50, verbose=1, refit=True
)
search.fit(posteriors, labels)
bandwidth = search.best_params_['bandwidth']
print(f'auto: bandwidth={bandwidth:.5f}')
return bandwidth
def get_kde_function(self, posteriors):
# if self.bandwidth == 'auto':
# print('adjusting bandwidth')
#
# if self.engine == 'sklearn':
# grid = {'bandwidth': np.linspace(0.001,0.2,41)}
# search = GridSearchCV(
# KernelDensity(), param_grid=grid, n_jobs=-1, cv=10, verbose=1, refit=True
# )
# search.fit(posteriors)
# print(search.best_score_)
# print(search.best_params_)
#
# import pandas as pd
# df = pd.DataFrame(search.cv_results_)
# pd.set_option('display.max_columns', None)
# pd.set_option('display.max_rows', None)
# pd.set_option('expand_frame_repr', False)
# print(df)
# sys.exit(0)
#
# kde = search
#else:
if self.engine == 'scipy':
# scipy treats columns as datapoints, and need the datapoints not to lie in a lower-dimensional subspace, which
# requires removing the last dimension which is constrained
posteriors = posteriors[:,:-1].T
kde = scipy.stats.gaussian_kde(posteriors)
kde.set_bandwidth(self.bandwidth)
elif self.engine == 'sklearn':
#print('fitting kde')
kde = KernelDensity(bandwidth=self.bandwidth).fit(posteriors)
#print('[fitting done]')
return kde
def pdf(self, kde, posteriors):
if self.engine == 'scipy':
return kde(posteriors[:, :-1].T)
elif self.engine == 'sklearn':
return np.exp(kde.score_samples(posteriors))
def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, LabelledCollection] = None):
"""
:param data: the training set
:param fit_classifier: set to False to bypass the training (the learner is assumed to be already fit)
:param val_split: either a float in (0,1) indicating the proportion of training instances to use for
validation (e.g., 0.3 for using 30% of the training set as validation data), or a LabelledCollection
indicating the validation set itself, or an int indicating the number k of folds to be used in kFCV
to estimate the parameters
"""
if val_split is None:
val_split = self.val_split
self.classifier, y, posteriors, classes, class_count = cross_generate_predictions(
data, self.classifier, val_split, probabilistic=True, fit_classifier=fit_classifier, n_jobs=self.n_jobs
)
if self.bandwidth == 'auto':
self.bandwidth = self.search_bandwidth_maxlikelihood(posteriors, y)
self.val_densities = [self.get_kde_function(posteriors[y == cat]) for cat in range(data.n_classes)]
self.val_posteriors = posteriors
if self.target == 'min_divergence_uniform':
self.samples = qp.functional.uniform_prevalence_sampling(n_classes=data.n_classes, size=self.montecarlo_trials)
self.sample_densities = [self.pdf(kde_i, self.samples) for kde_i in self.val_densities]
elif self.target == 'min_divergence':
N = self.montecarlo_trials
rs = self.random_state
n = data.n_classes
self.reference_samples = np.vstack([kde_i.sample(N//n, random_state=rs) for kde_i in self.val_densities])
self.reference_classwise_densities = np.asarray([self.pdf(kde_j, self.reference_samples) for kde_j in self.val_densities])
self.reference_density = np.mean(self.reference_classwise_densities, axis=0) # equiv. to (uniform @ self.reference_classwise_densities)
elif self.target == 'min_divergence_deprecated': # the version of the first draft, with n*N presampled, then alpha*N chosen for class
self.class_samples = [kde_i.sample(self.montecarlo_trials, random_state=self.random_state) for kde_i in self.val_densities]
self.class_sample_densities = {}
for ci, samples_i in enumerate(self.class_samples):
self.class_sample_densities[ci] = np.asarray([self.pdf(kde_j, samples_i) for kde_j in self.val_densities]).T
return self
def aggregate(self, posteriors: np.ndarray):
if self.target == 'min_divergence':
return self._target_divergence(posteriors)
elif self.target == 'min_divergence_uniform':
return self._target_divergence_uniform(posteriors)
elif self.target == 'max_likelihood':
return self._target_likelihood(posteriors)
else:
raise ValueError('unknown target')
# new version in which we retain all n*N examples (sampled from a mixture with uniform parameter), and then
# apply importance sampling (IS). In this version we compute D(p_alpha||q) with IS, and not D(q||p_alpha) as
# in the first draft
def _target_divergence(self, posteriors):
# in this variant we evaluate the divergence using a Montecarlo approach
n_classes = len(self.val_densities)
test_kde = self.get_kde_function(posteriors)
test_densities = self.pdf(test_kde, self.reference_samples)
def f_squared_hellinger(u):
return (np.sqrt(u)-1)**2
# todo: this will fail when self.divergence is a callable, and is not the right place to do it anyway
if self.divergence.lower() == 'hd':
f = f_squared_hellinger
else:
raise ValueError('only squared HD is currently implemented')
epsilon = 1e-10
qs = test_densities + epsilon
rs = self.reference_density + epsilon
iw = qs/rs #importance weights
p_class = self.reference_classwise_densities + epsilon
fracs = p_class/qs
def divergence(prev):
# ps / qs = (prev @ p_class) / qs = prev @ (p_class / qs) = prev @ fracs
ps_div_qs = prev @ fracs
return np.mean( f(ps_div_qs) * iw )
return F.optim_minimize(divergence, n_classes)
# new version in which we retain all n*N examples (sampled from a mixture with uniform parameter), and then
# apply importance sampling (IS). In this version we compute D(q||p_alpha) with IS, and not D(p_alpha||q) as
# in the reformulation proposed above
def _target_divergence_q__p(self, posteriors):
# in this variant we evaluate the divergence using a Montecarlo approach
n_classes = len(self.val_densities)
test_kde = self.get_kde_function(posteriors)
test_densities = self.pdf(test_kde, self.reference_samples)
def f_squared_hellinger(u):
return (np.sqrt(u)-1)**2
# todo: this will fail when self.divergence is a callable, and is not the right place to do it anyway
if self.divergence.lower() == 'hd':
f = f_squared_hellinger
else:
raise ValueError('only squared HD is currently implemented')
epsilon = 1e-10
qs = test_densities + epsilon
rs = self.reference_density + epsilon
p_class = self.reference_classwise_densities + epsilon
# D(q||p_a) = 1/N sum f(q/p_a) * (p_a / p_u)
def divergence(prev):
p_a = prev @ p_class
return np.mean( f(qs/p_a) * (p_a/rs) )
return F.optim_minimize(divergence, n_classes)
# the first version we explain in the draft, choosing alpha*N from a pool of N for each class and w/o importance sampling
def _target_divergence_deprecated(self, posteriors):
# in this variant we evaluate the divergence using a Montecarlo approach
n_classes = len(self.val_densities)
test_kde = self.get_kde_function(posteriors)
test_densities_per_class = [self.pdf(test_kde, samples_i) for samples_i in self.class_samples]
# divergence = _get_divergence(self.divergence)
def kld_monte(pi, qi, eps=1e-8):
# there is no pi in front of the log because the samples are already drawn according to pi
smooth_pi = pi+eps
smooth_qi = qi+eps
return np.mean(np.log(smooth_pi / smooth_qi))
def squared_hellinger(pi, qi, eps=1e-8):
smooth_pi = pi + eps
smooth_qi = qi + eps
return np.mean((np.sqrt(smooth_pi/smooth_qi)-1)**2)
# todo: this will fail when self.divergence is a callable, and is not the right place to do it anyway
if self.divergence.lower() == 'kld':
fdivergence = kld_monte
elif self.divergence.lower() == 'hd':
fdivergence = squared_hellinger
def dissimilarity(prev):
# choose the samples according to the prevalence vector
# e.g., prev = [0.5, 0.3, 0.2] will draw 50% from KDE_0, 30% from KDE_1, and 20% from KDE_2
# the points are already pre-sampled and de densities are pre-computed, so that now all that remains
# is to pick a proportional number of each from each class (same for test)
num_variates_per_class = np.round(prev * self.montecarlo_trials).astype(int)
sample_densities = np.vstack(
[self.class_sample_densities[ci][:num_i] for ci, num_i in enumerate(num_variates_per_class)]
)
#val_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, sample_densities.T))
val_likelihood = prev @ sample_densities.T
#test_likelihood = []
#for samples_i, num_i in zip(test_densities_per_class, num_variates_per_class):
# test_likelihood.append(samples_i[:num_i])
#test_likelihood = np.concatenate[test]
test_likelihood = np.concatenate(
[samples_i[:num_i] for samples_i, num_i in zip(test_densities_per_class, num_variates_per_class)]
)
# return fdivergence(val_likelihood, test_likelihood) # this is wrong, If I sample from the val distribution
# then I am computing D(Test||Val), so it should be E_{x ~ Val}[f(Test(x)/Val(x))]
return fdivergence(test_likelihood, val_likelihood)
return F.optim_minimize(dissimilarity, n_classes)
# this version explores the entire simplex, and then applies importance sampling. We have not really tested it in deep but
# seems not to be promising
def _target_divergence_uniform(self, posteriors):
# in this variant we evaluate the divergence using a Montecarlo approach
n_classes = len(self.val_densities)
test_kde = self.get_kde_function(posteriors)
test_likelihood = self.pdf(test_kde, self.samples)
def f_squared_hellinger(t):
return (np.sqrt(t) - 1)**2
def f_jensen_shannon(t):
return -(t+1)*np.log((t+1)/2) + t*np.log(t)
def fdivergence(pi, qi, f, eps=1e-10):
spi = pi+eps
sqi = qi+eps
return np.mean(f(spi/sqi)*sqi)
if self.divergence.lower() == 'hd':
f = f_squared_hellinger
elif self.divergence.lower() == 'js':
f = f_jensen_shannon
def dissimilarity(prev):
val_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip (prev, self.sample_densities))
return fdivergence(val_likelihood, test_likelihood, f)
return F.optim_minimize(dissimilarity, n_classes)
def _target_likelihood(self, posteriors, eps=0.000001):
"""
Searches for the mixture model parameter (the sought prevalence values) that yields a validation distribution
(the mixture) that best matches the test distribution, in terms of the divergence measure of choice.
:param instances: instances in the sample
:return: a vector of class prevalence estimates
"""
np.random.RandomState(self.random_state)
n_classes = len(self.val_densities)
test_densities = [self.pdf(kde_i, posteriors) for kde_i in self.val_densities]
#return lambda posteriors: sum(prev_i * self.pdf(kde_i, posteriors) for kde_i, prev_i in zip(self.val_densities, prev))
def neg_loglikelihood(prev):
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip (prev, test_densities))
test_loglikelihood = np.log(test_mixture_likelihood + eps)
return -np.sum(test_loglikelihood)
return F.optim_minimize(neg_loglikelihood, n_classes)