forked from moreo/QuaPy
153 lines
5.7 KiB
Python
153 lines
5.7 KiB
Python
from copy import deepcopy
|
|
|
|
import quapy as qp
|
|
from sklearn.calibration import CalibratedClassifierCV
|
|
from sklearn.linear_model import LogisticRegression
|
|
from quapy.classification.methods import LowRankLogisticRegression
|
|
from quapy.method.meta import QuaNet
|
|
from quapy.protocol import APP
|
|
from quapy.method.aggregative import CC, ACC, PCC, PACC, MAX, MS, MS2, EMQ, HDy, newSVMAE
|
|
from quapy.method.meta import EHDy
|
|
import numpy as np
|
|
import os
|
|
import pickle
|
|
import itertools
|
|
import argparse
|
|
import torch
|
|
import shutil
|
|
|
|
|
|
N_JOBS = -1
|
|
CUDA_N_JOBS = 2
|
|
ENSEMBLE_N_JOBS = -1
|
|
|
|
qp.environ['SAMPLE_SIZE'] = 100
|
|
|
|
|
|
def newLR():
|
|
return LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1)
|
|
|
|
|
|
def calibratedLR():
|
|
return CalibratedClassifierCV(LogisticRegression(max_iter=1000, solver='lbfgs', n_jobs=-1))
|
|
|
|
|
|
__C_range = np.logspace(-3, 3, 7)
|
|
lr_params = {'classifier__C': __C_range, 'classifier__class_weight': [None, 'balanced']}
|
|
svmperf_params = {'classifier__C': __C_range}
|
|
|
|
|
|
def quantification_models():
|
|
yield 'cc', CC(newLR()), lr_params
|
|
yield 'acc', ACC(newLR()), lr_params
|
|
yield 'pcc', PCC(newLR()), lr_params
|
|
yield 'pacc', PACC(newLR()), lr_params
|
|
yield 'MAX', MAX(newLR()), lr_params
|
|
yield 'MS', MS(newLR()), lr_params
|
|
yield 'MS2', MS2(newLR()), lr_params
|
|
yield 'sldc', EMQ(newLR(), recalib='platt'), lr_params
|
|
yield 'svmmae', newSVMAE(), svmperf_params
|
|
yield 'hdy', HDy(newLR()), lr_params
|
|
|
|
|
|
def quantification_cuda_models():
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
print(f'Running QuaNet in {device}')
|
|
learner = LowRankLogisticRegression()
|
|
yield 'quanet', QuaNet(learner, checkpointdir=args.checkpointdir, device=device), lr_params
|
|
|
|
|
|
def evaluate_experiment(true_prevalences, estim_prevalences):
|
|
print('\nEvaluation Metrics:\n' + '=' * 22)
|
|
for eval_measure in [qp.error.mae, qp.error.mrae]:
|
|
err = eval_measure(true_prevalences, estim_prevalences)
|
|
print(f'\t{eval_measure.__name__}={err:.4f}')
|
|
print()
|
|
|
|
|
|
def result_path(path, dataset_name, model_name, run, optim_loss):
|
|
return os.path.join(path, f'{dataset_name}-{model_name}-run{run}-{optim_loss}.pkl')
|
|
|
|
|
|
def is_already_computed(dataset_name, model_name, run, optim_loss):
|
|
return os.path.exists(result_path(args.results, dataset_name, model_name, run, optim_loss))
|
|
|
|
|
|
def save_results(dataset_name, model_name, run, optim_loss, *results):
|
|
rpath = result_path(args.results, dataset_name, model_name, run, optim_loss)
|
|
qp.util.create_parent_dir(rpath)
|
|
with open(rpath, 'wb') as foo:
|
|
pickle.dump(tuple(results), foo, pickle.HIGHEST_PROTOCOL)
|
|
|
|
|
|
def run(experiment):
|
|
optim_loss, dataset_name, (model_name, model, hyperparams) = experiment
|
|
if dataset_name in ['acute.a', 'acute.b', 'iris.1']: return
|
|
|
|
collection = qp.datasets.fetch_UCILabelledCollection(dataset_name)
|
|
for run, data in enumerate(qp.data.Dataset.kFCV(collection, nfolds=5, nrepeats=1)):
|
|
if is_already_computed(dataset_name, model_name, run=run, optim_loss=optim_loss):
|
|
print(f'result for dataset={dataset_name} model={model_name} loss={optim_loss} run={run+1}/5 already computed.')
|
|
continue
|
|
|
|
print(f'running dataset={dataset_name} model={model_name} loss={optim_loss} run={run+1}/5')
|
|
# model selection (hyperparameter optimization for a quantification-oriented loss)
|
|
train, test = data.train_test
|
|
train, val = train.split_stratified()
|
|
if hyperparams is not None:
|
|
model_selection = qp.model_selection.GridSearchQ(
|
|
deepcopy(model),
|
|
param_grid=hyperparams,
|
|
protocol=APP(val, n_prevalences=21, repeats=25),
|
|
error=optim_loss,
|
|
refit=True,
|
|
timeout=60*60,
|
|
verbose=True
|
|
)
|
|
model_selection.fit(data.training)
|
|
model = model_selection.best_model()
|
|
best_params = model_selection.best_params_
|
|
else:
|
|
model.fit(data.training)
|
|
best_params = {}
|
|
|
|
# model evaluation
|
|
true_prevalences, estim_prevalences = qp.evaluation.prediction(
|
|
model,
|
|
protocol=APP(test, n_prevalences=21, repeats=100)
|
|
)
|
|
test_true_prevalence = data.test.prevalence()
|
|
|
|
evaluate_experiment(true_prevalences, estim_prevalences)
|
|
save_results(dataset_name, model_name, run, optim_loss,
|
|
true_prevalences, estim_prevalences,
|
|
data.training.prevalence(), test_true_prevalence,
|
|
best_params)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Run experiments for Tweeter Sentiment Quantification')
|
|
parser.add_argument('results', metavar='RESULT_PATH', type=str,
|
|
help='path to the directory where to store the results')
|
|
parser.add_argument('--svmperfpath', metavar='SVMPERF_PATH', type=str, default='../svm_perf_quantification',
|
|
help='path to the directory with svmperf')
|
|
parser.add_argument('--checkpointdir', metavar='PATH', type=str, default='./checkpoint',
|
|
help='path to the directory where to dump QuaNet checkpoints')
|
|
args = parser.parse_args()
|
|
|
|
print(f'Result folder: {args.results}')
|
|
np.random.seed(0)
|
|
|
|
qp.environ['SVMPERF_HOME'] = args.svmperfpath
|
|
|
|
optim_losses = ['mae']
|
|
datasets = qp.datasets.UCI_DATASETS
|
|
|
|
models = quantification_models()
|
|
qp.util.parallel(run, itertools.product(optim_losses, datasets, models), n_jobs=N_JOBS)
|
|
|
|
models = quantification_cuda_models()
|
|
qp.util.parallel(run, itertools.product(optim_losses, datasets, models), n_jobs=CUDA_N_JOBS)
|
|
|
|
shutil.rmtree(args.checkpointdir, ignore_errors=True)
|