1
0
Fork 0
QuaPy/quapy/protocol.py

348 lines
14 KiB
Python

from copy import deepcopy
import quapy as qp
import numpy as np
import itertools
from contextlib import ExitStack
from abc import ABCMeta, abstractmethod
from quapy.data import LabelledCollection
import quapy.functional as F
from os.path import exists
from glob import glob
class AbstractProtocol(metaclass=ABCMeta):
@abstractmethod
def __call__(self):
"""
Implements the protocol. Yields one sample at a time
:return: yields one sample at a time
"""
...
def total(self):
"""
Indicates the total number of samples that the protocol generates.
:return: The number of samples to generate if known, or `None` otherwise.
"""
return None
class AbstractStochasticSeededProtocol(AbstractProtocol):
"""
An AbstractStochasticSeededProtocol is a protocol that generates, via any random procedure (e.g.,
via random sapling), sequences of `LabelledCollection` samples. The protocol abstraction enforces
the object to be instantiated using a seed, so that the sequence can be completely replicated.
In order to make this functionality possible, the classes extending this abstraction need to
implement only two functions, :meth:`samples_parameters` which generates all the parameters
needed for extracting the samples, and :meth:`sample` that, given some parameters as input,
deterministically generates a sample.
:param seed: the seed for allowing to replicate any sequence of samples. Default is None, meaning that
the sequence will be different every time the protocol is called.
"""
_random_seed = -1 # means "not set"
def __init__(self, seed=None):
self.random_seed = seed
@property
def random_seed(self):
return self._random_seed
@random_seed.setter
def random_seed(self, seed):
self._random_seed = seed
@abstractmethod
def samples_parameters(self):
"""
This function has to return all the necessary parameters to replicate the samples
:return: a list of parameters, each of which serves to deterministically generate a sample
"""
...
@abstractmethod
def sample(self, params):
"""
Extract one sample determined by the given parameters
:param params: all the necessary parameters to generate a sample
:return: one sample (the same sample has to be generated for the same parameters)
"""
...
def __call__(self):
with ExitStack() as stack:
if self.random_seed == -1:
raise ValueError('The random seed has never been initialized. '
'Set it to None not to impose replicability.')
if self.random_seed is not None:
stack.enter_context(qp.util.temp_seed(self.random_seed))
for params in self.samples_parameters():
yield self.collator(self.sample(params))
def collator(self, sample, *args):
return sample
class OnLabelledCollectionProtocol:
RETURN_TYPES = ['sample_prev', 'labelled_collection']
def get_labelled_collection(self):
return self.data
def on_preclassified_instances(self, pre_classifications, in_place=False):
assert len(pre_classifications) == len(self.data), \
f'error: the pre-classified data has different shape ' \
f'(expected {len(self.data)}, found {len(pre_classifications)})'
if in_place:
self.data.instances = pre_classifications
return self
else:
new = deepcopy(self)
return new.on_preclassified_instances(pre_classifications, in_place=True)
@classmethod
def get_collator(cls, return_type='sample_prev'):
assert return_type in cls.RETURN_TYPES, \
f'unknown return type passed as argument; valid ones are {cls.RETURN_TYPES}'
if return_type=='sample_prev':
return lambda lc:lc.Xp
elif return_type=='labelled_collection':
return lambda lc:lc
class APP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol):
"""
Implementation of the artificial prevalence protocol (APP).
The APP consists of exploring a grid of prevalence values containing `n_prevalences` points (e.g.,
[0, 0.05, 0.1, 0.15, ..., 1], if `n_prevalences=21`), and generating all valid combinations of
prevalence values for all classes (e.g., for 3 classes, samples with [0, 0, 1], [0, 0.05, 0.95], ...,
[1, 0, 0] prevalence values of size `sample_size` will be yielded). The number of samples for each valid
combination of prevalence values is indicated by `repeats`.
:param data: a `LabelledCollection` from which the samples will be drawn
:param sample_size: integer, number of instances in each sample
:param n_prevalences: the number of equidistant prevalence points to extract from the [0,1] interval for the
grid (default is 21)
:param repeats: number of copies for each valid prevalence vector (default is 10)
:param random_seed: allows replicating samples across runs (default None)
"""
def __init__(self, data:LabelledCollection, sample_size, n_prevalences=21, repeats=10, random_seed=None, return_type='sample_prev'):
super(APP, self).__init__(random_seed)
self.data = data
self.sample_size = sample_size
self.n_prevalences = n_prevalences
self.repeats = repeats
self.collator = OnLabelledCollectionProtocol.get_collator(return_type)
def prevalence_grid(self):
"""
Generates vectors of prevalence values from an exhaustive grid of prevalence values. The
number of prevalence values explored for each dimension depends on `n_prevalences`, so that, if, for example,
`n_prevalences=11` then the prevalence values of the grid are taken from [0, 0.1, 0.2, ..., 0.9, 1]. Only
valid prevalence distributions are returned, i.e., vectors of prevalence values that sum up to 1. For each
valid vector of prevalence values, `repeat` copies are returned. The vector of prevalence values can be
implicit (by setting `return_constrained_dim=False`), meaning that the last dimension (which is constrained
to 1 - sum of the rest) is not returned (note that, quite obviously, in this case the vector does not sum up to
1). Note that this method is deterministic, i.e., there is no random sampling anywhere.
:return: a `np.ndarray` of shape `(n, dimensions)` if `return_constrained_dim=True` or of shape
`(n, dimensions-1)` if `return_constrained_dim=False`, where `n` is the number of valid combinations found
in the grid multiplied by `repeat`
"""
dimensions = self.data.n_classes
s = np.linspace(0., 1., self.n_prevalences, endpoint=True)
s = [s] * (dimensions - 1)
prevs = [p for p in itertools.product(*s, repeat=1) if (sum(p) <= 1.0)]
prevs = np.asarray(prevs).reshape(len(prevs), -1)
if self.repeats > 1:
prevs = np.repeat(prevs, self.repeats, axis=0)
return prevs
def samples_parameters(self):
indexes = []
for prevs in self.prevalence_grid():
index = self.data.sampling_index(self.sample_size, *prevs)
indexes.append(index)
return indexes
def sample(self, index):
return self.data.sampling_from_index(index)
def total(self):
return F.num_prevalence_combinations(self.n_prevalences, self.data.n_classes, self.repeats)
class NPP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol):
"""
A generator of samples that implements the natural prevalence protocol (NPP). The NPP consists of drawing
samples uniformly at random, therefore approximately preserving the natural prevalence of the collection.
:param data: a `LabelledCollection` from which the samples will be drawn
:param sample_size: integer, the number of instances in each sample
:param repeats: the number of samples to generate. Default is 100.
:param random_seed: allows replicating samples across runs (default None)
"""
def __init__(self, data:LabelledCollection, sample_size, repeats=100, random_seed=None, return_type='sample_prev'):
super(NPP, self).__init__(random_seed)
self.data = data
self.sample_size = sample_size
self.repeats = repeats
self.random_seed = random_seed
self.collator = OnLabelledCollectionProtocol.get_collator(return_type)
def samples_parameters(self):
indexes = []
for _ in range(self.repeats):
index = self.data.uniform_sampling_index(self.sample_size)
indexes.append(index)
return indexes
def sample(self, index):
return self.data.sampling_from_index(index)
def total(self):
return self.repeats
class USimplexPP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol):
"""
A variant of :class:`APP` that, instead of using a grid of equidistant prevalence values,
relies on the Kraemer algorithm for sampling unit (k-1)-simplex uniformly at random, with
k the number of classes. This protocol covers the entire range of prevalence values in a
statistical sense, i.e., unlike APP there is no guarantee that it is covered precisely
equally for all classes, but it is preferred in cases in which the number of possible
combinations of the grid values of APP makes this endeavour intractable.
:param data: a `LabelledCollection` from which the samples will be drawn
:param sample_size: integer, the number of instances in each sample
:param repeats: the number of samples to generate. Default is 100.
:param random_seed: allows replicating samples across runs (default None)
"""
def __init__(self, data: LabelledCollection, sample_size, repeats=100, random_seed=None, return_type='sample_prev'):
super(USimplexPP, self).__init__(random_seed)
self.data = data
self.sample_size = sample_size
self.repeats = repeats
self.random_seed = random_seed
self.collator = OnLabelledCollectionProtocol.get_collator(return_type)
def samples_parameters(self):
indexes = []
for prevs in F.uniform_simplex_sampling(n_classes=self.data.n_classes, size=self.repeats):
index = self.data.sampling_index(self.sample_size, *prevs)
indexes.append(index)
return indexes
def sample(self, index):
return self.data.sampling_from_index(index)
def total(self):
return self.repeats
# class LoadSamplesFromDirectory(AbstractProtocol):
#
# def __init__(self, folder_path, loader_fn, classes=None, **loader_kwargs):
# assert exists(folder_path), f'folder {folder_path} does not exist'
# assert callable(loader_fn), f'the passed load_fn does not seem to be callable'
# self.folder_path = folder_path
# self.loader_fn = loader_fn
# self.classes = classes
# self.loader_kwargs = loader_kwargs
# self._list_files = None
#
# def __call__(self):
# for file in self.list_files:
# yield LabelledCollection.load(file, loader_func=self.loader_fn, classes=self.classes, **self.loader_kwargs)
#
# @property
# def list_files(self):
# if self._list_files is None:
# self._list_files = sorted(glob(self.folder_path, '*'))
# return self._list_files
#
# def total(self):
# return len(self.list_files)
class CovariateShiftPP(AbstractStochasticSeededProtocol):
"""
Generates mixtures of two domains (A and B) at controlled rates, but preserving the original class prevalence.
:param domainA:
:param domainB:
:param sample_size:
:param repeats:
:param prevalence: the prevalence to preserv along the mixtures. If specified, should be an array containing
one prevalence value (positive float) for each class and summing up to one. If not specified, the prevalence
will be taken from the domain A (default).
:param mixture_points: an integer indicating the number of points to take from a linear scale (e.g., 21 will
generate the mixture points [1, 0.95, 0.9, ..., 0]), or the array of mixture values itself.
the specific points
:param random_seed:
"""
def __init__(
self,
domainA: LabelledCollection,
domainB: LabelledCollection,
sample_size,
repeats=1,
prevalence=None,
mixture_points=11,
random_seed=None):
super(CovariateShiftPP, self).__init__(random_seed)
self.A = domainA
self.B = domainB
self.sample_size = sample_size
self.repeats = repeats
if prevalence is None:
self.prevalence = domainA.prevalence()
else:
self.prevalence = np.asarray(prevalence)
assert len(self.prevalence) == domainA.n_classes, \
f'wrong shape for the vector prevalence (expected {domainA.n_classes})'
assert F.check_prevalence_vector(self.prevalence), \
f'the prevalence vector is not valid (either it contains values outside [0,1] or does not sum up to 1)'
if isinstance(mixture_points, int):
self.mixture_points = np.linspace(0, 1, mixture_points)[::-1]
else:
self.mixture_points = np.asarray(mixture_points)
assert all(np.logical_and(self.mixture_points >= 0, self.mixture_points<=1)), \
'mixture_model datatype not understood (expected int or a sequence of real values in [0,1])'
self.random_seed = random_seed
def samples_parameters(self):
indexesA, indexesB = [], []
for propA in self.mixture_points:
for _ in range(self.repeats):
nA = int(np.round(self.sample_size * propA))
nB = self.sample_size-nA
sampleAidx = self.A.sampling_index(nA, *self.prevalence)
sampleBidx = self.B.sampling_index(nB, *self.prevalence)
indexesA.append(sampleAidx)
indexesB.append(sampleBidx)
return list(zip(indexesA, indexesB))
def sample(self, indexes):
indexesA, indexesB = indexes
sampleA = self.A.sampling_from_index(indexesA)
sampleB = self.B.sampling_from_index(indexesB)
return (sampleA+sampleB).Xp
def total(self):
return self.repeats * len(self.mixture_points)