forked from moreo/QuaPy
348 lines
14 KiB
Python
348 lines
14 KiB
Python
from copy import deepcopy
|
|
import quapy as qp
|
|
import numpy as np
|
|
import itertools
|
|
from contextlib import ExitStack
|
|
from abc import ABCMeta, abstractmethod
|
|
from quapy.data import LabelledCollection
|
|
import quapy.functional as F
|
|
from os.path import exists
|
|
from glob import glob
|
|
|
|
|
|
class AbstractProtocol(metaclass=ABCMeta):
|
|
|
|
@abstractmethod
|
|
def __call__(self):
|
|
"""
|
|
Implements the protocol. Yields one sample at a time
|
|
|
|
:return: yields one sample at a time
|
|
"""
|
|
...
|
|
|
|
def total(self):
|
|
"""
|
|
Indicates the total number of samples that the protocol generates.
|
|
|
|
:return: The number of samples to generate if known, or `None` otherwise.
|
|
"""
|
|
return None
|
|
|
|
|
|
class AbstractStochasticSeededProtocol(AbstractProtocol):
|
|
"""
|
|
An AbstractStochasticSeededProtocol is a protocol that generates, via any random procedure (e.g.,
|
|
via random sapling), sequences of `LabelledCollection` samples. The protocol abstraction enforces
|
|
the object to be instantiated using a seed, so that the sequence can be completely replicated.
|
|
In order to make this functionality possible, the classes extending this abstraction need to
|
|
implement only two functions, :meth:`samples_parameters` which generates all the parameters
|
|
needed for extracting the samples, and :meth:`sample` that, given some parameters as input,
|
|
deterministically generates a sample.
|
|
|
|
:param seed: the seed for allowing to replicate any sequence of samples. Default is None, meaning that
|
|
the sequence will be different every time the protocol is called.
|
|
"""
|
|
|
|
_random_seed = -1 # means "not set"
|
|
|
|
def __init__(self, seed=None):
|
|
self.random_seed = seed
|
|
|
|
@property
|
|
def random_seed(self):
|
|
return self._random_seed
|
|
|
|
@random_seed.setter
|
|
def random_seed(self, seed):
|
|
self._random_seed = seed
|
|
|
|
@abstractmethod
|
|
def samples_parameters(self):
|
|
"""
|
|
This function has to return all the necessary parameters to replicate the samples
|
|
|
|
:return: a list of parameters, each of which serves to deterministically generate a sample
|
|
"""
|
|
...
|
|
|
|
@abstractmethod
|
|
def sample(self, params):
|
|
"""
|
|
Extract one sample determined by the given parameters
|
|
|
|
:param params: all the necessary parameters to generate a sample
|
|
:return: one sample (the same sample has to be generated for the same parameters)
|
|
"""
|
|
...
|
|
|
|
def __call__(self):
|
|
with ExitStack() as stack:
|
|
if self.random_seed == -1:
|
|
raise ValueError('The random seed has never been initialized. '
|
|
'Set it to None not to impose replicability.')
|
|
if self.random_seed is not None:
|
|
stack.enter_context(qp.util.temp_seed(self.random_seed))
|
|
for params in self.samples_parameters():
|
|
yield self.collator(self.sample(params))
|
|
|
|
def collator(self, sample, *args):
|
|
return sample
|
|
|
|
|
|
class OnLabelledCollectionProtocol:
|
|
|
|
RETURN_TYPES = ['sample_prev', 'labelled_collection']
|
|
|
|
def get_labelled_collection(self):
|
|
return self.data
|
|
|
|
def on_preclassified_instances(self, pre_classifications, in_place=False):
|
|
assert len(pre_classifications) == len(self.data), \
|
|
f'error: the pre-classified data has different shape ' \
|
|
f'(expected {len(self.data)}, found {len(pre_classifications)})'
|
|
if in_place:
|
|
self.data.instances = pre_classifications
|
|
return self
|
|
else:
|
|
new = deepcopy(self)
|
|
return new.on_preclassified_instances(pre_classifications, in_place=True)
|
|
|
|
@classmethod
|
|
def get_collator(cls, return_type='sample_prev'):
|
|
assert return_type in cls.RETURN_TYPES, \
|
|
f'unknown return type passed as argument; valid ones are {cls.RETURN_TYPES}'
|
|
if return_type=='sample_prev':
|
|
return lambda lc:lc.Xp
|
|
elif return_type=='labelled_collection':
|
|
return lambda lc:lc
|
|
|
|
|
|
class APP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol):
|
|
"""
|
|
Implementation of the artificial prevalence protocol (APP).
|
|
The APP consists of exploring a grid of prevalence values containing `n_prevalences` points (e.g.,
|
|
[0, 0.05, 0.1, 0.15, ..., 1], if `n_prevalences=21`), and generating all valid combinations of
|
|
prevalence values for all classes (e.g., for 3 classes, samples with [0, 0, 1], [0, 0.05, 0.95], ...,
|
|
[1, 0, 0] prevalence values of size `sample_size` will be yielded). The number of samples for each valid
|
|
combination of prevalence values is indicated by `repeats`.
|
|
|
|
:param data: a `LabelledCollection` from which the samples will be drawn
|
|
:param sample_size: integer, number of instances in each sample
|
|
:param n_prevalences: the number of equidistant prevalence points to extract from the [0,1] interval for the
|
|
grid (default is 21)
|
|
:param repeats: number of copies for each valid prevalence vector (default is 10)
|
|
:param random_seed: allows replicating samples across runs (default None)
|
|
"""
|
|
|
|
def __init__(self, data:LabelledCollection, sample_size, n_prevalences=21, repeats=10, random_seed=None, return_type='sample_prev'):
|
|
super(APP, self).__init__(random_seed)
|
|
self.data = data
|
|
self.sample_size = sample_size
|
|
self.n_prevalences = n_prevalences
|
|
self.repeats = repeats
|
|
self.collator = OnLabelledCollectionProtocol.get_collator(return_type)
|
|
|
|
def prevalence_grid(self):
|
|
"""
|
|
Generates vectors of prevalence values from an exhaustive grid of prevalence values. The
|
|
number of prevalence values explored for each dimension depends on `n_prevalences`, so that, if, for example,
|
|
`n_prevalences=11` then the prevalence values of the grid are taken from [0, 0.1, 0.2, ..., 0.9, 1]. Only
|
|
valid prevalence distributions are returned, i.e., vectors of prevalence values that sum up to 1. For each
|
|
valid vector of prevalence values, `repeat` copies are returned. The vector of prevalence values can be
|
|
implicit (by setting `return_constrained_dim=False`), meaning that the last dimension (which is constrained
|
|
to 1 - sum of the rest) is not returned (note that, quite obviously, in this case the vector does not sum up to
|
|
1). Note that this method is deterministic, i.e., there is no random sampling anywhere.
|
|
|
|
:return: a `np.ndarray` of shape `(n, dimensions)` if `return_constrained_dim=True` or of shape
|
|
`(n, dimensions-1)` if `return_constrained_dim=False`, where `n` is the number of valid combinations found
|
|
in the grid multiplied by `repeat`
|
|
"""
|
|
dimensions = self.data.n_classes
|
|
s = np.linspace(0., 1., self.n_prevalences, endpoint=True)
|
|
s = [s] * (dimensions - 1)
|
|
prevs = [p for p in itertools.product(*s, repeat=1) if (sum(p) <= 1.0)]
|
|
prevs = np.asarray(prevs).reshape(len(prevs), -1)
|
|
if self.repeats > 1:
|
|
prevs = np.repeat(prevs, self.repeats, axis=0)
|
|
return prevs
|
|
|
|
def samples_parameters(self):
|
|
indexes = []
|
|
for prevs in self.prevalence_grid():
|
|
index = self.data.sampling_index(self.sample_size, *prevs)
|
|
indexes.append(index)
|
|
return indexes
|
|
|
|
def sample(self, index):
|
|
return self.data.sampling_from_index(index)
|
|
|
|
def total(self):
|
|
return F.num_prevalence_combinations(self.n_prevalences, self.data.n_classes, self.repeats)
|
|
|
|
|
|
class NPP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol):
|
|
"""
|
|
A generator of samples that implements the natural prevalence protocol (NPP). The NPP consists of drawing
|
|
samples uniformly at random, therefore approximately preserving the natural prevalence of the collection.
|
|
|
|
:param data: a `LabelledCollection` from which the samples will be drawn
|
|
:param sample_size: integer, the number of instances in each sample
|
|
:param repeats: the number of samples to generate. Default is 100.
|
|
:param random_seed: allows replicating samples across runs (default None)
|
|
"""
|
|
|
|
def __init__(self, data:LabelledCollection, sample_size, repeats=100, random_seed=None, return_type='sample_prev'):
|
|
super(NPP, self).__init__(random_seed)
|
|
self.data = data
|
|
self.sample_size = sample_size
|
|
self.repeats = repeats
|
|
self.random_seed = random_seed
|
|
self.collator = OnLabelledCollectionProtocol.get_collator(return_type)
|
|
|
|
def samples_parameters(self):
|
|
indexes = []
|
|
for _ in range(self.repeats):
|
|
index = self.data.uniform_sampling_index(self.sample_size)
|
|
indexes.append(index)
|
|
return indexes
|
|
|
|
def sample(self, index):
|
|
return self.data.sampling_from_index(index)
|
|
|
|
def total(self):
|
|
return self.repeats
|
|
|
|
|
|
class USimplexPP(AbstractStochasticSeededProtocol, OnLabelledCollectionProtocol):
|
|
"""
|
|
A variant of :class:`APP` that, instead of using a grid of equidistant prevalence values,
|
|
relies on the Kraemer algorithm for sampling unit (k-1)-simplex uniformly at random, with
|
|
k the number of classes. This protocol covers the entire range of prevalence values in a
|
|
statistical sense, i.e., unlike APP there is no guarantee that it is covered precisely
|
|
equally for all classes, but it is preferred in cases in which the number of possible
|
|
combinations of the grid values of APP makes this endeavour intractable.
|
|
|
|
:param data: a `LabelledCollection` from which the samples will be drawn
|
|
:param sample_size: integer, the number of instances in each sample
|
|
:param repeats: the number of samples to generate. Default is 100.
|
|
:param random_seed: allows replicating samples across runs (default None)
|
|
"""
|
|
|
|
def __init__(self, data: LabelledCollection, sample_size, repeats=100, random_seed=None, return_type='sample_prev'):
|
|
super(USimplexPP, self).__init__(random_seed)
|
|
self.data = data
|
|
self.sample_size = sample_size
|
|
self.repeats = repeats
|
|
self.random_seed = random_seed
|
|
self.collator = OnLabelledCollectionProtocol.get_collator(return_type)
|
|
|
|
def samples_parameters(self):
|
|
indexes = []
|
|
for prevs in F.uniform_simplex_sampling(n_classes=self.data.n_classes, size=self.repeats):
|
|
index = self.data.sampling_index(self.sample_size, *prevs)
|
|
indexes.append(index)
|
|
return indexes
|
|
|
|
def sample(self, index):
|
|
return self.data.sampling_from_index(index)
|
|
|
|
def total(self):
|
|
return self.repeats
|
|
|
|
|
|
# class LoadSamplesFromDirectory(AbstractProtocol):
|
|
#
|
|
# def __init__(self, folder_path, loader_fn, classes=None, **loader_kwargs):
|
|
# assert exists(folder_path), f'folder {folder_path} does not exist'
|
|
# assert callable(loader_fn), f'the passed load_fn does not seem to be callable'
|
|
# self.folder_path = folder_path
|
|
# self.loader_fn = loader_fn
|
|
# self.classes = classes
|
|
# self.loader_kwargs = loader_kwargs
|
|
# self._list_files = None
|
|
#
|
|
# def __call__(self):
|
|
# for file in self.list_files:
|
|
# yield LabelledCollection.load(file, loader_func=self.loader_fn, classes=self.classes, **self.loader_kwargs)
|
|
#
|
|
# @property
|
|
# def list_files(self):
|
|
# if self._list_files is None:
|
|
# self._list_files = sorted(glob(self.folder_path, '*'))
|
|
# return self._list_files
|
|
#
|
|
# def total(self):
|
|
# return len(self.list_files)
|
|
|
|
|
|
class CovariateShiftPP(AbstractStochasticSeededProtocol):
|
|
"""
|
|
Generates mixtures of two domains (A and B) at controlled rates, but preserving the original class prevalence.
|
|
|
|
:param domainA:
|
|
:param domainB:
|
|
:param sample_size:
|
|
:param repeats:
|
|
:param prevalence: the prevalence to preserv along the mixtures. If specified, should be an array containing
|
|
one prevalence value (positive float) for each class and summing up to one. If not specified, the prevalence
|
|
will be taken from the domain A (default).
|
|
:param mixture_points: an integer indicating the number of points to take from a linear scale (e.g., 21 will
|
|
generate the mixture points [1, 0.95, 0.9, ..., 0]), or the array of mixture values itself.
|
|
the specific points
|
|
:param random_seed:
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
domainA: LabelledCollection,
|
|
domainB: LabelledCollection,
|
|
sample_size,
|
|
repeats=1,
|
|
prevalence=None,
|
|
mixture_points=11,
|
|
random_seed=None):
|
|
super(CovariateShiftPP, self).__init__(random_seed)
|
|
self.A = domainA
|
|
self.B = domainB
|
|
self.sample_size = sample_size
|
|
self.repeats = repeats
|
|
if prevalence is None:
|
|
self.prevalence = domainA.prevalence()
|
|
else:
|
|
self.prevalence = np.asarray(prevalence)
|
|
assert len(self.prevalence) == domainA.n_classes, \
|
|
f'wrong shape for the vector prevalence (expected {domainA.n_classes})'
|
|
assert F.check_prevalence_vector(self.prevalence), \
|
|
f'the prevalence vector is not valid (either it contains values outside [0,1] or does not sum up to 1)'
|
|
if isinstance(mixture_points, int):
|
|
self.mixture_points = np.linspace(0, 1, mixture_points)[::-1]
|
|
else:
|
|
self.mixture_points = np.asarray(mixture_points)
|
|
assert all(np.logical_and(self.mixture_points >= 0, self.mixture_points<=1)), \
|
|
'mixture_model datatype not understood (expected int or a sequence of real values in [0,1])'
|
|
self.random_seed = random_seed
|
|
|
|
def samples_parameters(self):
|
|
indexesA, indexesB = [], []
|
|
for propA in self.mixture_points:
|
|
for _ in range(self.repeats):
|
|
nA = int(np.round(self.sample_size * propA))
|
|
nB = self.sample_size-nA
|
|
sampleAidx = self.A.sampling_index(nA, *self.prevalence)
|
|
sampleBidx = self.B.sampling_index(nB, *self.prevalence)
|
|
indexesA.append(sampleAidx)
|
|
indexesB.append(sampleBidx)
|
|
return list(zip(indexesA, indexesB))
|
|
|
|
def sample(self, indexes):
|
|
indexesA, indexesB = indexes
|
|
sampleA = self.A.sampling_from_index(indexesA)
|
|
sampleB = self.B.sampling_from_index(indexesB)
|
|
return (sampleA+sampleB).Xp
|
|
|
|
def total(self):
|
|
return self.repeats * len(self.mixture_points)
|
|
|
|
|